
Find the integral \[\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx=\]
A. \[0\]
B. \[2\]
C. \[\dfrac{1}{2}\]
D. None of these
Answer
216k+ views
Hint: In this question, we are to find the given integral. The given integral is in the interval $[-1,1]$. So, we can go for an even or an odd function integral. By applying $x=-x$ in the given function, we can find that the function is an even or odd function. According to the type of function, we can evaluate the integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx\]
Consider the function in the given interval as
\[f(x)=\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}\]
On substituting \[x=-x\] in the function $f(x)$, we get
\[\begin{align}
& f(-x)=\sqrt{\dfrac{1}{2}\left( 1-\cos 2(-x) \right)} \\
& \text{ }=\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)} \\
& \text{ }=f(x) \\
\end{align}\]
Since $f(-x)=f(x)$, the function in the given integral is an even function.
Thus, we can use the formula,
$\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$
Then,
\[\begin{align}
& I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx \\
& \text{ }=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx \\
\end{align}\]
Since we know that $(1-\cos 2x)=2{{\sin }^{2}}x$, the integral become
$\begin{align}
& I=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 2{{\sin }^{2}}x \right)}}dx \\
& \text{ }=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sqrt{{{\sin }^{2}}x}}dx \\
& \text{ }=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sin x}dx \\
& \text{ }=2\left[ -\cos x \right]_{0}^{{}^{\pi }/{}_{2}} \\
\end{align}$
On applying the limits, we get
\[\begin{align}
& I=2\left[ -\cos \dfrac{\pi }{2}+\cos 0 \right] \\
& \text{ }=2[0+1] \\
& \text{ }=2 \\
\end{align}\]
Thus, \[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx=2\]
Option ‘B’ is correct
Note: In this question, we have a trigonometric function in the integral. So, it is a little difficult to solve with a normal ILET integration method. Since the given integral has limits in the interval of $[-a, a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $x=-x$ in the function $f(x)$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$(upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
\[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx\]
Consider the function in the given interval as
\[f(x)=\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}\]
On substituting \[x=-x\] in the function $f(x)$, we get
\[\begin{align}
& f(-x)=\sqrt{\dfrac{1}{2}\left( 1-\cos 2(-x) \right)} \\
& \text{ }=\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)} \\
& \text{ }=f(x) \\
\end{align}\]
Since $f(-x)=f(x)$, the function in the given integral is an even function.
Thus, we can use the formula,
$\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$
Then,
\[\begin{align}
& I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx \\
& \text{ }=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx \\
\end{align}\]
Since we know that $(1-\cos 2x)=2{{\sin }^{2}}x$, the integral become
$\begin{align}
& I=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 2{{\sin }^{2}}x \right)}}dx \\
& \text{ }=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sqrt{{{\sin }^{2}}x}}dx \\
& \text{ }=2\int\limits_{0}^{{}^{\pi }/{}_{2}}{\sin x}dx \\
& \text{ }=2\left[ -\cos x \right]_{0}^{{}^{\pi }/{}_{2}} \\
\end{align}$
On applying the limits, we get
\[\begin{align}
& I=2\left[ -\cos \dfrac{\pi }{2}+\cos 0 \right] \\
& \text{ }=2[0+1] \\
& \text{ }=2 \\
\end{align}\]
Thus, \[I=\int\limits_{-{}^{\pi }/{}_{2}}^{{}^{\pi }/{}_{2}}{\sqrt{\dfrac{1}{2}\left( 1-\cos 2x \right)}}dx=2\]
Option ‘B’ is correct
Note: In this question, we have a trigonometric function in the integral. So, it is a little difficult to solve with a normal ILET integration method. Since the given integral has limits in the interval of $[-a, a]$ type, we can use the predefined formulae, where the type of the function plays the role. So, in order to know the type of the function, we need to substitute $x=-x$ in the function $f(x)$. Then, according to the type of the function i.e., either it is an even or odd function, we can evaluate the integral of the given function within the interval.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

