
Find the integral, $\int{\dfrac{({{4}^{x+1}}-{{7}^{x-1}})}{{{28}^{x}}}}=$
A. $\left( \dfrac{1}{7{{\log }_{e}}4} \right){{4}^{-x}}-\left( \dfrac{4}{{{\log }_{e}}7} \right){{7}^{-x}}+C$
B. $\left( \dfrac{1}{7{{\log }_{e}}4} \right){{4}^{-x}}+\left( \dfrac{4}{{{\log }_{e}}7} \right){{7}^{-x}}+C$
C. $\left( \dfrac{1}{{{\log }_{e}}7} \right)-\left( \dfrac{{{7}^{-x}}}{{{\log }_{e}}4} \right)+C$
D. $\left( \dfrac{{{4}^{-x}}}{{{\log }_{e}}4} \right)-\left( \dfrac{{{7}^{-x}}}{{{\log }_{e}}7} \right)+C$
E. $\left( \dfrac{1}{28} \right){{\log }_{e}}{{4}^{-x}}+\left( \dfrac{1}{7} \right){{\log }_{e}}{{7}^{-x}}+C$
Answer
232.8k+ views
Hint: In this question, we have to find the integration for which we should have knowledge of integration of ${{a}^{x}}$. So, simplify the terms and use the integration formula separately for each term. In order to do this, firstly we need to simplify the numerator and denominators for a simple form if possible. Then it becomes easy for us to solve the integration with appropriate formulae.
Formula Used: The formula used here is $\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{\log a}+c$ for $a\ne 1,a>0$
Here, formula used is valid in which $a\ne 1$ otherwise $\log a$ will become 0 and the integrated product will go to infinity.
Complete step by step solution:Firstly, separate the terms and solve in its simplest form before proceeding to integration.
$\begin{align}
& \dfrac{{{4}^{x+1}}}{{{28}^{x}}}=\dfrac{{{4}^{x}}\times 4}{{{4}^{x}}\times {{7}^{x}}}=\dfrac{4}{{{7}^{x}}}\text{ }...(1) \\
& \dfrac{{{7}^{x-1}}}{{{28}^{x}}}=\dfrac{{{7}^{x}}\times {{7}^{-1}}}{{{4}^{x}}\times {{7}^{x}}}=\dfrac{1}{7\times {{4}^{x}}}\text{ }...(2) \\
\end{align}$
Here, we have made them in their simplest form. Now, integrate the individual terms taking constants out of integration, i.e., 4 in the first term and 7 in the second term.
So,
$\begin{align}
& I=\int{\left( \dfrac{{{4}^{x+1}}}{{{28}^{x}}}-\dfrac{{{7}^{x-1}}}{{{28}^{x}}} \right)dx} \\
& \text{ }=\int{\left( \dfrac{4}{{{7}^{x}}}-\dfrac{1}{7\times {{4}^{x}}} \right)}dx \\
& \text{ }=4\int{\dfrac{1}{{{7}^{x}}}dx-\dfrac{1}{7}}\int{\dfrac{1}{{{4}^{x}}}}dx \\
& \text{ }=\dfrac{4\times {{7}^{-x}}}{-{{\log }_{e}}7}-\dfrac{{{4}^{-x}}}{-7{{\log }_{e}}4}+C \\
& \text{ =}\dfrac{{{4}^{-x}}}{7{{\log }_{e}}4}-\dfrac{4\times {{7}^{-x}}}{{{\log }_{e}}7}+C \\
\end{align}$
Therefore, the given integral is $\int{\dfrac{({{4}^{x+1}}-{{7}^{x-1}})}{{{28}^{x}}}}=\left( \dfrac{1}{7{{\log }_{e}}4} \right){{4}^{-x}}-\left( \dfrac{4}{{{\log }_{e}}7} \right){{7}^{-x}}+C$
So, Option ‘A’ is correct
Note:This type question, we may get confused at negative signs and negative powers. Be sure with them and use appropriate formulae at the required place.
Formula Used: The formula used here is $\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{\log a}+c$ for $a\ne 1,a>0$
Here, formula used is valid in which $a\ne 1$ otherwise $\log a$ will become 0 and the integrated product will go to infinity.
Complete step by step solution:Firstly, separate the terms and solve in its simplest form before proceeding to integration.
$\begin{align}
& \dfrac{{{4}^{x+1}}}{{{28}^{x}}}=\dfrac{{{4}^{x}}\times 4}{{{4}^{x}}\times {{7}^{x}}}=\dfrac{4}{{{7}^{x}}}\text{ }...(1) \\
& \dfrac{{{7}^{x-1}}}{{{28}^{x}}}=\dfrac{{{7}^{x}}\times {{7}^{-1}}}{{{4}^{x}}\times {{7}^{x}}}=\dfrac{1}{7\times {{4}^{x}}}\text{ }...(2) \\
\end{align}$
Here, we have made them in their simplest form. Now, integrate the individual terms taking constants out of integration, i.e., 4 in the first term and 7 in the second term.
So,
$\begin{align}
& I=\int{\left( \dfrac{{{4}^{x+1}}}{{{28}^{x}}}-\dfrac{{{7}^{x-1}}}{{{28}^{x}}} \right)dx} \\
& \text{ }=\int{\left( \dfrac{4}{{{7}^{x}}}-\dfrac{1}{7\times {{4}^{x}}} \right)}dx \\
& \text{ }=4\int{\dfrac{1}{{{7}^{x}}}dx-\dfrac{1}{7}}\int{\dfrac{1}{{{4}^{x}}}}dx \\
& \text{ }=\dfrac{4\times {{7}^{-x}}}{-{{\log }_{e}}7}-\dfrac{{{4}^{-x}}}{-7{{\log }_{e}}4}+C \\
& \text{ =}\dfrac{{{4}^{-x}}}{7{{\log }_{e}}4}-\dfrac{4\times {{7}^{-x}}}{{{\log }_{e}}7}+C \\
\end{align}$
Therefore, the given integral is $\int{\dfrac{({{4}^{x+1}}-{{7}^{x-1}})}{{{28}^{x}}}}=\left( \dfrac{1}{7{{\log }_{e}}4} \right){{4}^{-x}}-\left( \dfrac{4}{{{\log }_{e}}7} \right){{7}^{-x}}+C$
So, Option ‘A’ is correct
Note:This type question, we may get confused at negative signs and negative powers. Be sure with them and use appropriate formulae at the required place.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

