Find the increase in pressure required to decrease the volume of a water sample by $0.01\% $. Bulk modulus of water = $2.1 \times {10^9}{{N}}{{{m}}^{ - 2}}$.
Answer
Verified
119.1k+ views
Hint: Bulk modulus is the ability of a material to withstand volumetric changes due to compressive forces applied to it. The bulk modulus of a material can be defined as the ratio of the volumetric stress of a material to its volumetric strain.
Formula used:
$\Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Complete step by step solution:
The bulk modulus of a material is a measure of how resistant the particular material is to compression. It can also be called the incompressibility of a material. Bulk modulus is defined as the proportion of volumetric stress of a material related to its volumetric strain when the deformation of the material is within its elastic limit. The symbol used for Bulk modulus is ${{K}}$ and the dimensions are of force per unit area and the S.I unit of Bulk modulus is ${{N/}}{{{m}}^{ - 2}}$.
Bulk modulus of a material is
${{K = - }}$$\Delta {{P}}\dfrac{{{V}}}{{\Delta {{V}}}}$,
where $\Delta {{P}}$is the change in pressure of force applied per unit area,
$\Delta {{V}}$ is the change in volume of the material due to compression and
$V$ is the initial volume of the material. Therefore,
$\Rightarrow \Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Since the decrease of the water sample is given as $0.01\% $
$\Rightarrow \Delta {{V = }} - \dfrac{{0.01}}{{100}} \times {{V}}$
$ \Rightarrow \dfrac{{\Delta {{V}}}}{{{V}}} = - 0.0001$
On putting the values in the equation, we get:
$\Rightarrow \Delta {{P = 0}}{{.0001}} \times {{2}}{{.1}} \times {{1}}{{{0}}^9}{{N/}}{{{m}}^2}$
$ \Rightarrow \Delta {{P = 2}}{{.1}} \times {{1}}{{{0}}^5}{{N/}}{{{m}}^2}$
Therefore, the increase in pressure required to decrease the volume of the water sample by $0.01\% $ is $2.1 \times {10^5}{{N/}}{{{m}}^2}$.
Note: Bulk modulus should not be confused with young’s modulus or shear modulus. Young’s modulus is the ratio of tensile stress to tensile strain and shear modulus is the ratio of shear stress to shear strain, while bulk modulus is the ratio of tensile stress to tensile strain.
Formula used:
$\Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Complete step by step solution:
The bulk modulus of a material is a measure of how resistant the particular material is to compression. It can also be called the incompressibility of a material. Bulk modulus is defined as the proportion of volumetric stress of a material related to its volumetric strain when the deformation of the material is within its elastic limit. The symbol used for Bulk modulus is ${{K}}$ and the dimensions are of force per unit area and the S.I unit of Bulk modulus is ${{N/}}{{{m}}^{ - 2}}$.
Bulk modulus of a material is
${{K = - }}$$\Delta {{P}}\dfrac{{{V}}}{{\Delta {{V}}}}$,
where $\Delta {{P}}$is the change in pressure of force applied per unit area,
$\Delta {{V}}$ is the change in volume of the material due to compression and
$V$ is the initial volume of the material. Therefore,
$\Rightarrow \Delta {{P = - K}}\dfrac{{\Delta {{V}}}}{{{V}}}$
Since the decrease of the water sample is given as $0.01\% $
$\Rightarrow \Delta {{V = }} - \dfrac{{0.01}}{{100}} \times {{V}}$
$ \Rightarrow \dfrac{{\Delta {{V}}}}{{{V}}} = - 0.0001$
On putting the values in the equation, we get:
$\Rightarrow \Delta {{P = 0}}{{.0001}} \times {{2}}{{.1}} \times {{1}}{{{0}}^9}{{N/}}{{{m}}^2}$
$ \Rightarrow \Delta {{P = 2}}{{.1}} \times {{1}}{{{0}}^5}{{N/}}{{{m}}^2}$
Therefore, the increase in pressure required to decrease the volume of the water sample by $0.01\% $ is $2.1 \times {10^5}{{N/}}{{{m}}^2}$.
Note: Bulk modulus should not be confused with young’s modulus or shear modulus. Young’s modulus is the ratio of tensile stress to tensile strain and shear modulus is the ratio of shear stress to shear strain, while bulk modulus is the ratio of tensile stress to tensile strain.
Recently Updated Pages
JEE Main 2022 (July 25th Shift 2) Chemistry Question Paper with Answer Key
Angular Momentum of Rotating Body - Important Concepts and Tips for JEE
Conservation of Momentum and Explosion Important Concepts for JEE
JEE Main 2022 (July 25th Shift 1) Chemistry Question Paper with Answer Key
JEE Main 2022 (July 27th Shift 2) Maths Question Paper with Answer Key
JEE Main 2023 (January 29th Shift 2) Chemistry Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs