
Find the frequency of a photon of energy 75eV.
Answer
220.2k+ views
Hint: Photon is the smallest quanta of energy. According to the particle nature of light, light behaves as particles and this is confirmed by photoelectric effect, but according to wave nature of light, light behaves as waves and this is confirmed by phenomenon like reflection, refraction etc. We can make use of the Planck quantum formula to solve this problem.
Complete Step by step solution:
Given the energy of photon is $75eV$
We know energy is given by the formula\[E=h\nu \], where h is the Planck’s constant whose value is \[6.6\times {{10}^{-34}}Js\] and v is the frequency.
When the energy is given in electron-Volts, we have to first convert it into Joules.
$E=75eV \\
\Rightarrow E=75\times 1.6\times {{10}^{-19}}J \\
\therefore E=12\times {{10}^{-18}}J \\$
Now we make use of the above-mentioned formula,
$E=12\times {{10}^{-18}}J \\
\Rightarrow hv=12\times {{10}^{-18}} \\
\Rightarrow 6.6\times {{10}^{-34}}\times v=12\times {{10}^{-18}} \\
\Rightarrow v=\dfrac{12\times {{10}^{-18}}}{6.6\times {{10}^{-34}}} \\
\therefore v=1.82\times {{10}^{16}}Hz \\$
So, the frequency comes out to be \[1.82\times {{10}^{16}}Hz\]
Additional Information: From photoelectric effect, Einstein equation is given by \[h\nu =h{{\nu }_{0}}+KE\]
Here \[h\nu \]in the energy of the incident radiation and \[h{{\nu }_{0}}\]is the work function of the metal given.
Note: Here the energy was given in eV, so we first converted it into Joules and then used the formula. But suppose if we had to find the wavelength and the frequency both then we could have use the formula; \[E=\frac{hc}{\lambda }\], where we would have taken E in eV and the value of hc we would have taken 1240 eV-nm. After finding the wavelength in nm we would have converted it into metres, and then we would have used the formula for finding out the frequency.
Complete Step by step solution:
Given the energy of photon is $75eV$
We know energy is given by the formula\[E=h\nu \], where h is the Planck’s constant whose value is \[6.6\times {{10}^{-34}}Js\] and v is the frequency.
When the energy is given in electron-Volts, we have to first convert it into Joules.
$E=75eV \\
\Rightarrow E=75\times 1.6\times {{10}^{-19}}J \\
\therefore E=12\times {{10}^{-18}}J \\$
Now we make use of the above-mentioned formula,
$E=12\times {{10}^{-18}}J \\
\Rightarrow hv=12\times {{10}^{-18}} \\
\Rightarrow 6.6\times {{10}^{-34}}\times v=12\times {{10}^{-18}} \\
\Rightarrow v=\dfrac{12\times {{10}^{-18}}}{6.6\times {{10}^{-34}}} \\
\therefore v=1.82\times {{10}^{16}}Hz \\$
So, the frequency comes out to be \[1.82\times {{10}^{16}}Hz\]
Additional Information: From photoelectric effect, Einstein equation is given by \[h\nu =h{{\nu }_{0}}+KE\]
Here \[h\nu \]in the energy of the incident radiation and \[h{{\nu }_{0}}\]is the work function of the metal given.
Note: Here the energy was given in eV, so we first converted it into Joules and then used the formula. But suppose if we had to find the wavelength and the frequency both then we could have use the formula; \[E=\frac{hc}{\lambda }\], where we would have taken E in eV and the value of hc we would have taken 1240 eV-nm. After finding the wavelength in nm we would have converted it into metres, and then we would have used the formula for finding out the frequency.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

