
Find the equation of the lines passes through the origin and having slopes \[3\] and \[ - \dfrac{1}{3}\] .
A. \[{{3}}{{{y}}^{{2}}} + {{8xy}}-{{3}}{{{x}}^{{2}}} = {{0}}\]
B. \[{{3}}{x^{{2}}} + {{8xy}}-{{3}}{y^{{2}}} = {{0}}\]
C. \[{{3}}{{{y}}^{{2}}} - {{8xy}} + {{3}}{{{x}}^{{2}}} = {{0}}\]
D. \[{{3}}{x^{{2}}} + {{8xy}} + {{3}}{y^{{2}}} = {{0}}\]
Answer
218.1k+ views
Hint: Firstly, we need to find the equations of straight lines after comparing them with the general equation of the straight line in slope form. After that multiply the linear equations to get the required solution.
Formula used
General equation of straight line in slope form, \[y = mx + c\] , where \[m,c\] are real numbers.
Complete step by step solution
First, we find the equation which passes through the origin and has a slope \[3\].
Equation of the line is \[y = 3x\]
\[ \Rightarrow y - 3x = 0\] …………………(1)
Now, we find the equation which passes through the origin and has a slope \[ - \dfrac{1}{3}\].
Equation of the line is \[y = - \dfrac{1}{3}x\]
\[ \Rightarrow - 3y = x\]
\[ \Rightarrow 3y + x = 0\] ………………..(2)
Now, multiplying both the equations (1) and (2), we get
\[\left( {y - 3x} \right)\left( {3y + x} \right) = 0 \times 0\]
\[ \Rightarrow 3{y^2} - 9xy + xy - 3{x^2} = 0\]
\[ \Rightarrow 3{y^2} - 8xy - 3{x^2} = 0\] ………………………(3)
Taking \[( - 1)\] from both sides of the equation (3) and we get
\[ \Rightarrow - \left( {3{x^2} + 8xy - 3{y^2}} \right) = 0 \times \left( { - 1} \right)\]
\[ \Rightarrow 3{x^2} + 8xy - 3{y^2} = 0\]
Therefore, the required solution is \[3{x^2} + 8xy - 3{y^2} = 0\].
Hence option B is correct.
Note: Students got confused in taking common value or sign from the equation. When we take common in this time it should be maintained that we take the value from each term of the equation.
Formula used
General equation of straight line in slope form, \[y = mx + c\] , where \[m,c\] are real numbers.
Complete step by step solution
First, we find the equation which passes through the origin and has a slope \[3\].
Equation of the line is \[y = 3x\]
\[ \Rightarrow y - 3x = 0\] …………………(1)
Now, we find the equation which passes through the origin and has a slope \[ - \dfrac{1}{3}\].
Equation of the line is \[y = - \dfrac{1}{3}x\]
\[ \Rightarrow - 3y = x\]
\[ \Rightarrow 3y + x = 0\] ………………..(2)
Now, multiplying both the equations (1) and (2), we get
\[\left( {y - 3x} \right)\left( {3y + x} \right) = 0 \times 0\]
\[ \Rightarrow 3{y^2} - 9xy + xy - 3{x^2} = 0\]
\[ \Rightarrow 3{y^2} - 8xy - 3{x^2} = 0\] ………………………(3)
Taking \[( - 1)\] from both sides of the equation (3) and we get
\[ \Rightarrow - \left( {3{x^2} + 8xy - 3{y^2}} \right) = 0 \times \left( { - 1} \right)\]
\[ \Rightarrow 3{x^2} + 8xy - 3{y^2} = 0\]
Therefore, the required solution is \[3{x^2} + 8xy - 3{y^2} = 0\].
Hence option B is correct.
Note: Students got confused in taking common value or sign from the equation. When we take common in this time it should be maintained that we take the value from each term of the equation.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

