
Find the correct option
If $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ , then $\left(\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}\right)(x + y + z)$ is equal to
A. 0
B. 1
C. 2
D. 3
Answer
217.5k+ views
Hint: Using relevant differentiation rules of logarithm function and algebraic function in the form of $x^n$, each derivative given in the expression is calculated separately one by one and putting those calculated values, the expression is simplified using suitable algebraic formulae of factorization to find the final value of the expression and to choose the correct option.
Formula Used:
The following differentiation and algebraic formulas have been used to simplify the given expression:
1. $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ , where, $v$ is a function of $x$.
2. $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
3. ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$
Complete step by step solution:
We have been given that $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ .
We have to find out the value of the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ .
The above expression comprises three derivatives and one algebraic expression.
We will find out the value of each derivative one by one.
First, to find $\dfrac{{du}}{{dx}}$ , we will consider $y,z$ as constants and $u$ as a function of $x$ .
So, $\dfrac{{du}}{{dx}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dx}} = \dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{x^2} - 3yz)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Similarly, to find $\dfrac{{du}}{{dy}}$ , we will consider $z,x$ as constants and $u$ as a function of $y$ .
So, $\dfrac{{du}}{{dy}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dy}} = \dfrac{{d(\log v)}}{{dy}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dy}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dy}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{y^2} - 3zx)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
And to find $\dfrac{{du}}{{dz}}$ , we will consider $x,y$ as constants and $u$ as a function of $z$ .
So, $\dfrac{{du}}{{dz}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dz}} = \dfrac{{d(\log v)}}{{dz}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dz}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dz}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{z^2} - 3xy)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Now, substituting the above calculated values of the derivatives in the expression, we have
$\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z) = \left[ {\dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}} \right] \times (x + y + z)$$ = \dfrac{{3({x^2} + {y^2} + {z^2} - xy - yz - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (x + y + z)$
$ = \dfrac{{3({x^3} + {y^3} + {z^3} - 3xyz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$ [Since ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$]
$= 3$
So, the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ is equal to 3.
Option ‘D’ is correct
Note: The formula $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ is applied to find the derivative of the logarithm function in case of base $e$ , but, when, the base is different say $a$, then the formula applied will be $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{1}{{\log a}} \times \dfrac{{dv}}{{dx}}$.
Formula Used:
The following differentiation and algebraic formulas have been used to simplify the given expression:
1. $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ , where, $v$ is a function of $x$.
2. $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
3. ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$
Complete step by step solution:
We have been given that $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ .
We have to find out the value of the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ .
The above expression comprises three derivatives and one algebraic expression.
We will find out the value of each derivative one by one.
First, to find $\dfrac{{du}}{{dx}}$ , we will consider $y,z$ as constants and $u$ as a function of $x$ .
So, $\dfrac{{du}}{{dx}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dx}} = \dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{x^2} - 3yz)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Similarly, to find $\dfrac{{du}}{{dy}}$ , we will consider $z,x$ as constants and $u$ as a function of $y$ .
So, $\dfrac{{du}}{{dy}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dy}} = \dfrac{{d(\log v)}}{{dy}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dy}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dy}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{y^2} - 3zx)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
And to find $\dfrac{{du}}{{dz}}$ , we will consider $x,y$ as constants and $u$ as a function of $z$ .
So, $\dfrac{{du}}{{dz}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dz}} = \dfrac{{d(\log v)}}{{dz}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dz}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dz}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{z^2} - 3xy)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Now, substituting the above calculated values of the derivatives in the expression, we have
$\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z) = \left[ {\dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}} \right] \times (x + y + z)$$ = \dfrac{{3({x^2} + {y^2} + {z^2} - xy - yz - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (x + y + z)$
$ = \dfrac{{3({x^3} + {y^3} + {z^3} - 3xyz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$ [Since ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$]
$= 3$
So, the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ is equal to 3.
Option ‘D’ is correct
Note: The formula $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ is applied to find the derivative of the logarithm function in case of base $e$ , but, when, the base is different say $a$, then the formula applied will be $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{1}{{\log a}} \times \dfrac{{dv}}{{dx}}$.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

