
Find the correct option
If $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ , then $\left(\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}\right)(x + y + z)$ is equal to
A. 0
B. 1
C. 2
D. 3
Answer
162k+ views
Hint: Using relevant differentiation rules of logarithm function and algebraic function in the form of $x^n$, each derivative given in the expression is calculated separately one by one and putting those calculated values, the expression is simplified using suitable algebraic formulae of factorization to find the final value of the expression and to choose the correct option.
Formula Used:
The following differentiation and algebraic formulas have been used to simplify the given expression:
1. $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ , where, $v$ is a function of $x$.
2. $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
3. ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$
Complete step by step solution:
We have been given that $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ .
We have to find out the value of the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ .
The above expression comprises three derivatives and one algebraic expression.
We will find out the value of each derivative one by one.
First, to find $\dfrac{{du}}{{dx}}$ , we will consider $y,z$ as constants and $u$ as a function of $x$ .
So, $\dfrac{{du}}{{dx}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dx}} = \dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{x^2} - 3yz)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Similarly, to find $\dfrac{{du}}{{dy}}$ , we will consider $z,x$ as constants and $u$ as a function of $y$ .
So, $\dfrac{{du}}{{dy}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dy}} = \dfrac{{d(\log v)}}{{dy}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dy}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dy}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{y^2} - 3zx)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
And to find $\dfrac{{du}}{{dz}}$ , we will consider $x,y$ as constants and $u$ as a function of $z$ .
So, $\dfrac{{du}}{{dz}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dz}} = \dfrac{{d(\log v)}}{{dz}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dz}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dz}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{z^2} - 3xy)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Now, substituting the above calculated values of the derivatives in the expression, we have
$\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z) = \left[ {\dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}} \right] \times (x + y + z)$$ = \dfrac{{3({x^2} + {y^2} + {z^2} - xy - yz - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (x + y + z)$
$ = \dfrac{{3({x^3} + {y^3} + {z^3} - 3xyz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$ [Since ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$]
$= 3$
So, the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ is equal to 3.
Option ‘D’ is correct
Note: The formula $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ is applied to find the derivative of the logarithm function in case of base $e$ , but, when, the base is different say $a$, then the formula applied will be $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{1}{{\log a}} \times \dfrac{{dv}}{{dx}}$.
Formula Used:
The following differentiation and algebraic formulas have been used to simplify the given expression:
1. $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ , where, $v$ is a function of $x$.
2. $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$
3. ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$
Complete step by step solution:
We have been given that $u = \log ({x^3} + {y^3} + {z^3} - 3xyz)$ .
We have to find out the value of the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ .
The above expression comprises three derivatives and one algebraic expression.
We will find out the value of each derivative one by one.
First, to find $\dfrac{{du}}{{dx}}$ , we will consider $y,z$ as constants and $u$ as a function of $x$ .
So, $\dfrac{{du}}{{dx}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dx}} = \dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dx}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dx}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{x^2} - 3yz)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Similarly, to find $\dfrac{{du}}{{dy}}$ , we will consider $z,x$ as constants and $u$ as a function of $y$ .
So, $\dfrac{{du}}{{dy}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dy}} = \dfrac{{d(\log v)}}{{dy}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dy}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dy}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dy}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{y^2} - 3zx)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
And to find $\dfrac{{du}}{{dz}}$ , we will consider $x,y$ as constants and $u$ as a function of $z$ .
So, $\dfrac{{du}}{{dz}} = \dfrac{{d[\log ({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
Taking ${x^3} + {y^3} + {z^3} - 3xyz$ equal to $v$, we have
$\dfrac{{du}}{{dz}} = \dfrac{{d(\log v)}}{{dz}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dz}}$
Substituting the value of $v$ , we get
$\dfrac{{du}}{{dz}} = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times \dfrac{{d({x^3} + {y^3} + {z^3} - 3xyz)}}{{dz}}$
$ = \dfrac{1}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (3{z^2} - 3xy)$ [Applying the formula $\dfrac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$ , where $n = 3$ ]
$ = \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$
Now, substituting the above calculated values of the derivatives in the expression, we have
$\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z) = \left[ {\dfrac{{3({x^2} - yz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({y^2} - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} + \dfrac{{3({z^2} - xy)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}} \right] \times (x + y + z)$$ = \dfrac{{3({x^2} + {y^2} + {z^2} - xy - yz - zx)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}} \times (x + y + z)$
$ = \dfrac{{3({x^3} + {y^3} + {z^3} - 3xyz)}}{{({x^3} + {y^3} + {z^3} - 3xyz)}}$ [Since ${x^3} + {y^3} + {z^3} - 3xyz = (x + y + z)({x^2} + {y^2} + {z^2} - xy - yz - zx)$]
$= 3$
So, the expression $\left( {\dfrac{{du}}{{dx}} + \dfrac{{du}}{{dy}} + \dfrac{{du}}{{dz}}} \right)(x + y + z)$ is equal to 3.
Option ‘D’ is correct
Note: The formula $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{{dv}}{{dx}}$ is applied to find the derivative of the logarithm function in case of base $e$ , but, when, the base is different say $a$, then the formula applied will be $\dfrac{{d(\log v)}}{{dx}} = \dfrac{1}{v} \times \dfrac{1}{{\log a}} \times \dfrac{{dv}}{{dx}}$.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
