
Find the correct option
If the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] and \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\] , then, the angle between \[\overrightarrow a \] and \[\overrightarrow b \] is equal to
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{\pi }{4}\]
D. \[\dfrac{\pi }{6}\]
Answer
216k+ views
Hint: By using the projection formula, the projection of one vector on another vector is found and then an equation is established with the given data to calculate the angle between the two vectors and the correct option is chosen.
Formula used: The following formulas are used to solve this problem:
If \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors and \[\theta \] is the angle between them, then,
1. The projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is equal to \[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] .
2. The dot product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\overrightarrow a \overrightarrow {.b} \] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] .
3. The magnitude of cross product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] .
4. If \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] , then, the magnitude of the vector \[\overrightarrow a \] represented as \[\left| {\overrightarrow a } \right|\] is equal to \[\sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \] .
Complete step-by-step solution:
We have been given that \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors, the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] and \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\] .
Let, \[\theta \] is the angle between the two vectors and \[p\] is the magnitude of the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \]
Then, \[p = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] [Using the formula]
But, it is given that the above projection is equal to \[\left| {\overrightarrow a \times \overrightarrow b } \right|\]
Establishing the equation, we have
\[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a \times \overrightarrow b } \right|\]
\[ \Rightarrow \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\left| {\overrightarrow a \times \overrightarrow b } \right| = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] ]
\[ \Rightarrow \dfrac{{\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] ]
\[ \Rightarrow \dfrac{{\cos \theta }}{{\left| {\overrightarrow b } \right|}} = \sin \theta \]
Further solving the above
\[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\]
\[ \Rightarrow \tan \theta = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\] ………………………………equation (1)
Now, we will calculate the magnitude of the vector \[\overrightarrow b \] as follows:
Given, \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\]
\[ \Rightarrow \overrightarrow b = \dfrac{1}{{\sqrt 3 }}\widehat i + \dfrac{1}{{\sqrt 3 }}\widehat j + \dfrac{1}{{\sqrt 3 }}\widehat k\]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \] [Using formula \[\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \], if \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] ]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {\dfrac{1}{9} + \dfrac{1}{9} + \dfrac{1}{9}} \]
Further, simplifying the above
\[\left| {\overrightarrow b } \right| = \sqrt {\dfrac{3}{9}} \]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \dfrac{1}{{\sqrt 3 }}\]
Putting the value of \[\left| {\overrightarrow b } \right|\] in the equation (1)
\[\tan \theta = \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}}\]
\[ \Rightarrow \tan \theta = \sqrt 3 \]
\[ \Rightarrow \tan \theta = \tan \dfrac{\pi }{3}\]
\[ \Rightarrow \theta = \dfrac{\pi }{3}\]
Thus, the angle between \[\overrightarrow a \] and \[\overrightarrow b \] is equal to \[\dfrac{\pi }{3}\] .
Hence, option A. is the correct answer.
Note: The length of the projection of one vector on the other vector is obtained by dividing their dot product by the magnitude of the other vector. The cross product of two vectors is also a vector, while their dot product is a scalar quantity.
Formula used: The following formulas are used to solve this problem:
If \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors and \[\theta \] is the angle between them, then,
1. The projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is equal to \[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] .
2. The dot product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\overrightarrow a \overrightarrow {.b} \] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] .
3. The magnitude of cross product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] .
4. If \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] , then, the magnitude of the vector \[\overrightarrow a \] represented as \[\left| {\overrightarrow a } \right|\] is equal to \[\sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \] .
Complete step-by-step solution:
We have been given that \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors, the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] and \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\] .
Let, \[\theta \] is the angle between the two vectors and \[p\] is the magnitude of the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \]
Then, \[p = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] [Using the formula]
But, it is given that the above projection is equal to \[\left| {\overrightarrow a \times \overrightarrow b } \right|\]
Establishing the equation, we have
\[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a \times \overrightarrow b } \right|\]
\[ \Rightarrow \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\left| {\overrightarrow a \times \overrightarrow b } \right| = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] ]
\[ \Rightarrow \dfrac{{\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] ]
\[ \Rightarrow \dfrac{{\cos \theta }}{{\left| {\overrightarrow b } \right|}} = \sin \theta \]
Further solving the above
\[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\]
\[ \Rightarrow \tan \theta = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\] ………………………………equation (1)
Now, we will calculate the magnitude of the vector \[\overrightarrow b \] as follows:
Given, \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\]
\[ \Rightarrow \overrightarrow b = \dfrac{1}{{\sqrt 3 }}\widehat i + \dfrac{1}{{\sqrt 3 }}\widehat j + \dfrac{1}{{\sqrt 3 }}\widehat k\]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \] [Using formula \[\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \], if \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] ]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {\dfrac{1}{9} + \dfrac{1}{9} + \dfrac{1}{9}} \]
Further, simplifying the above
\[\left| {\overrightarrow b } \right| = \sqrt {\dfrac{3}{9}} \]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \dfrac{1}{{\sqrt 3 }}\]
Putting the value of \[\left| {\overrightarrow b } \right|\] in the equation (1)
\[\tan \theta = \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}}\]
\[ \Rightarrow \tan \theta = \sqrt 3 \]
\[ \Rightarrow \tan \theta = \tan \dfrac{\pi }{3}\]
\[ \Rightarrow \theta = \dfrac{\pi }{3}\]
Thus, the angle between \[\overrightarrow a \] and \[\overrightarrow b \] is equal to \[\dfrac{\pi }{3}\] .
Hence, option A. is the correct answer.
Note: The length of the projection of one vector on the other vector is obtained by dividing their dot product by the magnitude of the other vector. The cross product of two vectors is also a vector, while their dot product is a scalar quantity.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

