
Find the correct option
If the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] and \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\] , then, the angle between \[\overrightarrow a \] and \[\overrightarrow b \] is equal to
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{\pi }{4}\]
D. \[\dfrac{\pi }{6}\]
Answer
162k+ views
Hint: By using the projection formula, the projection of one vector on another vector is found and then an equation is established with the given data to calculate the angle between the two vectors and the correct option is chosen.
Formula used: The following formulas are used to solve this problem:
If \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors and \[\theta \] is the angle between them, then,
1. The projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is equal to \[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] .
2. The dot product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\overrightarrow a \overrightarrow {.b} \] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] .
3. The magnitude of cross product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] .
4. If \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] , then, the magnitude of the vector \[\overrightarrow a \] represented as \[\left| {\overrightarrow a } \right|\] is equal to \[\sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \] .
Complete step-by-step solution:
We have been given that \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors, the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] and \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\] .
Let, \[\theta \] is the angle between the two vectors and \[p\] is the magnitude of the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \]
Then, \[p = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] [Using the formula]
But, it is given that the above projection is equal to \[\left| {\overrightarrow a \times \overrightarrow b } \right|\]
Establishing the equation, we have
\[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a \times \overrightarrow b } \right|\]
\[ \Rightarrow \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\left| {\overrightarrow a \times \overrightarrow b } \right| = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] ]
\[ \Rightarrow \dfrac{{\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] ]
\[ \Rightarrow \dfrac{{\cos \theta }}{{\left| {\overrightarrow b } \right|}} = \sin \theta \]
Further solving the above
\[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\]
\[ \Rightarrow \tan \theta = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\] ………………………………equation (1)
Now, we will calculate the magnitude of the vector \[\overrightarrow b \] as follows:
Given, \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\]
\[ \Rightarrow \overrightarrow b = \dfrac{1}{{\sqrt 3 }}\widehat i + \dfrac{1}{{\sqrt 3 }}\widehat j + \dfrac{1}{{\sqrt 3 }}\widehat k\]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \] [Using formula \[\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \], if \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] ]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {\dfrac{1}{9} + \dfrac{1}{9} + \dfrac{1}{9}} \]
Further, simplifying the above
\[\left| {\overrightarrow b } \right| = \sqrt {\dfrac{3}{9}} \]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \dfrac{1}{{\sqrt 3 }}\]
Putting the value of \[\left| {\overrightarrow b } \right|\] in the equation (1)
\[\tan \theta = \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}}\]
\[ \Rightarrow \tan \theta = \sqrt 3 \]
\[ \Rightarrow \tan \theta = \tan \dfrac{\pi }{3}\]
\[ \Rightarrow \theta = \dfrac{\pi }{3}\]
Thus, the angle between \[\overrightarrow a \] and \[\overrightarrow b \] is equal to \[\dfrac{\pi }{3}\] .
Hence, option A. is the correct answer.
Note: The length of the projection of one vector on the other vector is obtained by dividing their dot product by the magnitude of the other vector. The cross product of two vectors is also a vector, while their dot product is a scalar quantity.
Formula used: The following formulas are used to solve this problem:
If \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors and \[\theta \] is the angle between them, then,
1. The projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is equal to \[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] .
2. The dot product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\overrightarrow a \overrightarrow {.b} \] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] .
3. The magnitude of cross product of the two vectors \[\overrightarrow a \] and \[\overrightarrow b \] represented as \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] is equal to \[\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] .
4. If \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] , then, the magnitude of the vector \[\overrightarrow a \] represented as \[\left| {\overrightarrow a } \right|\] is equal to \[\sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \] .
Complete step-by-step solution:
We have been given that \[\overrightarrow a \] and \[\overrightarrow b \] are two vectors, the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \] is \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] and \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\] .
Let, \[\theta \] is the angle between the two vectors and \[p\] is the magnitude of the projection of the vector \[\overrightarrow a \] on the vector \[\overrightarrow b \]
Then, \[p = \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}}\] [Using the formula]
But, it is given that the above projection is equal to \[\left| {\overrightarrow a \times \overrightarrow b } \right|\]
Establishing the equation, we have
\[\dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a \times \overrightarrow b } \right|\]
\[ \Rightarrow \dfrac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\left| {\overrightarrow a \times \overrightarrow b } \right| = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] ]
\[ \Rightarrow \dfrac{{\left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta }}{{\left| {\overrightarrow b } \right|}} = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \sin \theta \] [Since \[\overrightarrow a .\overrightarrow b = \left| {\overrightarrow a } \right| \times \left| {\overrightarrow b } \right| \times \cos \theta \] ]
\[ \Rightarrow \dfrac{{\cos \theta }}{{\left| {\overrightarrow b } \right|}} = \sin \theta \]
Further solving the above
\[\dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\]
\[ \Rightarrow \tan \theta = \dfrac{1}{{\left| {\overrightarrow b } \right|}}\] ………………………………equation (1)
Now, we will calculate the magnitude of the vector \[\overrightarrow b \] as follows:
Given, \[3\overrightarrow b = \widehat i + \widehat j + \widehat k\]
\[ \Rightarrow \overrightarrow b = \dfrac{1}{{\sqrt 3 }}\widehat i + \dfrac{1}{{\sqrt 3 }}\widehat j + \dfrac{1}{{\sqrt 3 }}\widehat k\]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \] [Using formula \[\left| {\overrightarrow a } \right| = \sqrt {{a_1}^2 + {a_2}^2 + {a_3}^2} \], if \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] ]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \sqrt {\dfrac{1}{9} + \dfrac{1}{9} + \dfrac{1}{9}} \]
Further, simplifying the above
\[\left| {\overrightarrow b } \right| = \sqrt {\dfrac{3}{9}} \]
\[ \Rightarrow \left| {\overrightarrow b } \right| = \dfrac{1}{{\sqrt 3 }}\]
Putting the value of \[\left| {\overrightarrow b } \right|\] in the equation (1)
\[\tan \theta = \dfrac{1}{{\dfrac{1}{{\sqrt 3 }}}}\]
\[ \Rightarrow \tan \theta = \sqrt 3 \]
\[ \Rightarrow \tan \theta = \tan \dfrac{\pi }{3}\]
\[ \Rightarrow \theta = \dfrac{\pi }{3}\]
Thus, the angle between \[\overrightarrow a \] and \[\overrightarrow b \] is equal to \[\dfrac{\pi }{3}\] .
Hence, option A. is the correct answer.
Note: The length of the projection of one vector on the other vector is obtained by dividing their dot product by the magnitude of the other vector. The cross product of two vectors is also a vector, while their dot product is a scalar quantity.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
