
Find the angle between the lines \[x\cos30^{\circ} + y\sin30^{\circ} = 3\] and \[x\cos60^{\circ} + y\sin60^{\circ} = 5\].
A. \[90^{\circ} \]
B. \[30^{\circ} \]
C. \[60^{\circ} \]
D. None of these
Answer
232.8k+ views
Hint First rewrite the given equations in the form \[y = mx + c\]. Then substitute the values of the trigonometric angles. After that, determine the slope of each line. In the end, use the formula \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] to get the angle between the two lines.
Formula used
The angle between the two lines with slope \[{m_1}\] and \[{m_2}\] is: \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\]
\[\sin30^{\circ} = \dfrac{1}{2}\]
\[\cot30^{\circ} = \sqrt{3} \]
\[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]
\[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\]
Complete step by step solution:
The given equations of the lines are \[x\cos30^{\circ} + y\sin30^{\circ} = 3\] and \[x\cos60^{\circ} + y\sin60^{\circ} = 5\].
Let’s simplify the equations in the point-slope form.
\[x\cos30^{\circ} + y\sin30^{\circ} = 3\]
\[ \Rightarrow \]\[y\sin30^{\circ} = 3 – x\cos30^{\circ} \]
Divide both sides by \[\sin30^{\circ} \]
\[y = \dfrac{3}{{\sin30^{\circ} }} - \dfrac{{x\cos30^{\circ} }}{{\sin30^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{3}{{\sin30^{\circ} }} – x\cot30^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{3}{{\dfrac{1}{2}}} - x\left( {\sqrt 3 } \right)\] [ Since \[\cot30^{\circ} = \sqrt 3 \] and \[\sin30^{\circ} = \dfrac{1}{2}\]]
\[ \Rightarrow \]\[y = - \sqrt 3 x + 6\]
Therefore, the slope of the line is \[{m_1} = - \sqrt 3 \].
\[x\cos60^{\circ} + y\sin60^{\circ} = 5\]
\[ \Rightarrow \]\[y\sin60^{\circ} = 5 – x\cos60^{\circ} \]
Divide both sides by \[\sin60^{\circ} \]
\[y = \dfrac{5}{{\sin60^{\circ} }} - \dfrac{{x\cos60^{\circ} }}{{\sin60^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{5}{{\sin60^{\circ} }} – x\cot60^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{5}{{\dfrac{{\sqrt 3 }}{2}}} - x\left( {\dfrac{1}{{\sqrt 3 }}} \right)\] [ Since \[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\] and \[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]]
\[ \Rightarrow \]\[y = - \dfrac{1}{{\sqrt 3 }}x + \dfrac{{10}}{{\sqrt 3 }}\]
Therefore, the slope of the line is \[{m_2} = - \dfrac{1}{{\sqrt 3 }}\].
Now apply the formula of the angle between the two lines \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\].
Substitute the values of the slopes in the formula.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} - \left( { - \sqrt 3 } \right)}}{{1 + \left( { - \sqrt 3 } \right)\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}}} \right|\]
Simplify the above equation.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} + \sqrt 3 }}{{1 + 1}}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{{ - 1 + 3}}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{2}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{1}{{\sqrt 3 }}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {tan3{0^o}} \right)\] [Since \[tan30^{\circ} = \dfrac{1}{{\sqrt 3 }}\]]
\[ \Rightarrow \]\[\theta = 30^{\circ} \][Since \[\tan^{ - 1}\left( {tanA} \right) = A\]]
Hence the correct option is B.
Note: The angle between the two lines can be found by calculating the slope of each line and then using them in the formula to determine the angle between two lines when the slope of each line is known.
Formula used
The angle between the two lines with slope \[{m_1}\] and \[{m_2}\] is: \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\]
\[\sin30^{\circ} = \dfrac{1}{2}\]
\[\cot30^{\circ} = \sqrt{3} \]
\[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]
\[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\]
Complete step by step solution:
The given equations of the lines are \[x\cos30^{\circ} + y\sin30^{\circ} = 3\] and \[x\cos60^{\circ} + y\sin60^{\circ} = 5\].
Let’s simplify the equations in the point-slope form.
\[x\cos30^{\circ} + y\sin30^{\circ} = 3\]
\[ \Rightarrow \]\[y\sin30^{\circ} = 3 – x\cos30^{\circ} \]
Divide both sides by \[\sin30^{\circ} \]
\[y = \dfrac{3}{{\sin30^{\circ} }} - \dfrac{{x\cos30^{\circ} }}{{\sin30^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{3}{{\sin30^{\circ} }} – x\cot30^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{3}{{\dfrac{1}{2}}} - x\left( {\sqrt 3 } \right)\] [ Since \[\cot30^{\circ} = \sqrt 3 \] and \[\sin30^{\circ} = \dfrac{1}{2}\]]
\[ \Rightarrow \]\[y = - \sqrt 3 x + 6\]
Therefore, the slope of the line is \[{m_1} = - \sqrt 3 \].
\[x\cos60^{\circ} + y\sin60^{\circ} = 5\]
\[ \Rightarrow \]\[y\sin60^{\circ} = 5 – x\cos60^{\circ} \]
Divide both sides by \[\sin60^{\circ} \]
\[y = \dfrac{5}{{\sin60^{\circ} }} - \dfrac{{x\cos60^{\circ} }}{{\sin60^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{5}{{\sin60^{\circ} }} – x\cot60^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{5}{{\dfrac{{\sqrt 3 }}{2}}} - x\left( {\dfrac{1}{{\sqrt 3 }}} \right)\] [ Since \[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\] and \[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]]
\[ \Rightarrow \]\[y = - \dfrac{1}{{\sqrt 3 }}x + \dfrac{{10}}{{\sqrt 3 }}\]
Therefore, the slope of the line is \[{m_2} = - \dfrac{1}{{\sqrt 3 }}\].
Now apply the formula of the angle between the two lines \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\].
Substitute the values of the slopes in the formula.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} - \left( { - \sqrt 3 } \right)}}{{1 + \left( { - \sqrt 3 } \right)\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}}} \right|\]
Simplify the above equation.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} + \sqrt 3 }}{{1 + 1}}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{{ - 1 + 3}}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{2}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{1}{{\sqrt 3 }}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {tan3{0^o}} \right)\] [Since \[tan30^{\circ} = \dfrac{1}{{\sqrt 3 }}\]]
\[ \Rightarrow \]\[\theta = 30^{\circ} \][Since \[\tan^{ - 1}\left( {tanA} \right) = A\]]
Hence the correct option is B.
Note: The angle between the two lines can be found by calculating the slope of each line and then using them in the formula to determine the angle between two lines when the slope of each line is known.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

