
Find the angle between the lines \[x\cos30^{\circ} + y\sin30^{\circ} = 3\] and \[x\cos60^{\circ} + y\sin60^{\circ} = 5\].
A. \[90^{\circ} \]
B. \[30^{\circ} \]
C. \[60^{\circ} \]
D. None of these
Answer
218.1k+ views
Hint First rewrite the given equations in the form \[y = mx + c\]. Then substitute the values of the trigonometric angles. After that, determine the slope of each line. In the end, use the formula \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\] to get the angle between the two lines.
Formula used
The angle between the two lines with slope \[{m_1}\] and \[{m_2}\] is: \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\]
\[\sin30^{\circ} = \dfrac{1}{2}\]
\[\cot30^{\circ} = \sqrt{3} \]
\[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]
\[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\]
Complete step by step solution:
The given equations of the lines are \[x\cos30^{\circ} + y\sin30^{\circ} = 3\] and \[x\cos60^{\circ} + y\sin60^{\circ} = 5\].
Let’s simplify the equations in the point-slope form.
\[x\cos30^{\circ} + y\sin30^{\circ} = 3\]
\[ \Rightarrow \]\[y\sin30^{\circ} = 3 – x\cos30^{\circ} \]
Divide both sides by \[\sin30^{\circ} \]
\[y = \dfrac{3}{{\sin30^{\circ} }} - \dfrac{{x\cos30^{\circ} }}{{\sin30^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{3}{{\sin30^{\circ} }} – x\cot30^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{3}{{\dfrac{1}{2}}} - x\left( {\sqrt 3 } \right)\] [ Since \[\cot30^{\circ} = \sqrt 3 \] and \[\sin30^{\circ} = \dfrac{1}{2}\]]
\[ \Rightarrow \]\[y = - \sqrt 3 x + 6\]
Therefore, the slope of the line is \[{m_1} = - \sqrt 3 \].
\[x\cos60^{\circ} + y\sin60^{\circ} = 5\]
\[ \Rightarrow \]\[y\sin60^{\circ} = 5 – x\cos60^{\circ} \]
Divide both sides by \[\sin60^{\circ} \]
\[y = \dfrac{5}{{\sin60^{\circ} }} - \dfrac{{x\cos60^{\circ} }}{{\sin60^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{5}{{\sin60^{\circ} }} – x\cot60^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{5}{{\dfrac{{\sqrt 3 }}{2}}} - x\left( {\dfrac{1}{{\sqrt 3 }}} \right)\] [ Since \[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\] and \[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]]
\[ \Rightarrow \]\[y = - \dfrac{1}{{\sqrt 3 }}x + \dfrac{{10}}{{\sqrt 3 }}\]
Therefore, the slope of the line is \[{m_2} = - \dfrac{1}{{\sqrt 3 }}\].
Now apply the formula of the angle between the two lines \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\].
Substitute the values of the slopes in the formula.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} - \left( { - \sqrt 3 } \right)}}{{1 + \left( { - \sqrt 3 } \right)\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}}} \right|\]
Simplify the above equation.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} + \sqrt 3 }}{{1 + 1}}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{{ - 1 + 3}}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{2}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{1}{{\sqrt 3 }}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {tan3{0^o}} \right)\] [Since \[tan30^{\circ} = \dfrac{1}{{\sqrt 3 }}\]]
\[ \Rightarrow \]\[\theta = 30^{\circ} \][Since \[\tan^{ - 1}\left( {tanA} \right) = A\]]
Hence the correct option is B.
Note: The angle between the two lines can be found by calculating the slope of each line and then using them in the formula to determine the angle between two lines when the slope of each line is known.
Formula used
The angle between the two lines with slope \[{m_1}\] and \[{m_2}\] is: \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\]
\[\sin30^{\circ} = \dfrac{1}{2}\]
\[\cot30^{\circ} = \sqrt{3} \]
\[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]
\[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\]
Complete step by step solution:
The given equations of the lines are \[x\cos30^{\circ} + y\sin30^{\circ} = 3\] and \[x\cos60^{\circ} + y\sin60^{\circ} = 5\].
Let’s simplify the equations in the point-slope form.
\[x\cos30^{\circ} + y\sin30^{\circ} = 3\]
\[ \Rightarrow \]\[y\sin30^{\circ} = 3 – x\cos30^{\circ} \]
Divide both sides by \[\sin30^{\circ} \]
\[y = \dfrac{3}{{\sin30^{\circ} }} - \dfrac{{x\cos30^{\circ} }}{{\sin30^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{3}{{\sin30^{\circ} }} – x\cot30^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{3}{{\dfrac{1}{2}}} - x\left( {\sqrt 3 } \right)\] [ Since \[\cot30^{\circ} = \sqrt 3 \] and \[\sin30^{\circ} = \dfrac{1}{2}\]]
\[ \Rightarrow \]\[y = - \sqrt 3 x + 6\]
Therefore, the slope of the line is \[{m_1} = - \sqrt 3 \].
\[x\cos60^{\circ} + y\sin60^{\circ} = 5\]
\[ \Rightarrow \]\[y\sin60^{\circ} = 5 – x\cos60^{\circ} \]
Divide both sides by \[\sin60^{\circ} \]
\[y = \dfrac{5}{{\sin60^{\circ} }} - \dfrac{{x\cos60^{\circ} }}{{\sin60^{\circ} }}\]
\[ \Rightarrow \]\[y = \dfrac{5}{{\sin60^{\circ} }} – x\cot60^{\circ} \] [ Since \[\dfrac{{\cos x}}{{\sin x}} = \cot x\]]
\[ \Rightarrow \]\[y = \dfrac{5}{{\dfrac{{\sqrt 3 }}{2}}} - x\left( {\dfrac{1}{{\sqrt 3 }}} \right)\] [ Since \[\cot60^{\circ} = \dfrac{1}{{\sqrt 3 }}\] and \[\sin60^{\circ} = \dfrac{{\sqrt 3 }}{2}\]]
\[ \Rightarrow \]\[y = - \dfrac{1}{{\sqrt 3 }}x + \dfrac{{10}}{{\sqrt 3 }}\]
Therefore, the slope of the line is \[{m_2} = - \dfrac{1}{{\sqrt 3 }}\].
Now apply the formula of the angle between the two lines \[\theta = \tan^{ - 1}\left| {\dfrac{{{m_2} - {m_1}}}{{1 + {m_1}{m_2}}}} \right|\].
Substitute the values of the slopes in the formula.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} - \left( { - \sqrt 3 } \right)}}{{1 + \left( { - \sqrt 3 } \right)\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}}} \right|\]
Simplify the above equation.
\[\theta = \tan^{ - 1}\left| {\dfrac{{ - \dfrac{1}{{\sqrt 3 }} + \sqrt 3 }}{{1 + 1}}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{{ - 1 + 3}}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{{\dfrac{2}{{\sqrt 3 }}}}{2}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left| {\dfrac{1}{{\sqrt 3 }}} \right|\]
\[ \Rightarrow \]\[\theta = \tan^{ - 1}\left( {tan3{0^o}} \right)\] [Since \[tan30^{\circ} = \dfrac{1}{{\sqrt 3 }}\]]
\[ \Rightarrow \]\[\theta = 30^{\circ} \][Since \[\tan^{ - 1}\left( {tanA} \right) = A\]]
Hence the correct option is B.
Note: The angle between the two lines can be found by calculating the slope of each line and then using them in the formula to determine the angle between two lines when the slope of each line is known.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

