
Find $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right)$.
A) $4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
C) $ - 4\cos ec\left( x \right) \times \cot \left( {2x} \right)$
D) None of these
Answer
218.7k+ views
Hint: We are required to differentiate a trigonometric function involving cosecant and secant functions. So, we first convert the secant and cosecant functions to sine and cosine to simplify the expression. Then, we use the half angle formula for sine to convert the function into easily integrable form and integrate the function by substitution.
Complete step by step solution:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = \sqrt {{{\sec }^2}x + \cos e{c^2}x} $.
Now, we use the trigonometric formulae for cosecant and secant as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$. Hence, substituting $\sec x$ and $\cos ecx$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{1}{{{{\sin }^2}x}}} $
Taking LCM in the square root, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}}} $
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\sin }^2}x{{\cos }^2}x}}} $
\[ \Rightarrow f\left( x \right) = \dfrac{1}{{\sin x\cos x}}\]
Multiplying numerator and denominator by 2, we get,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{2\sin x\cos x}}\]
Using double angle formula for sine $\sin 2x = 2\sin x\cos x$,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{\sin 2x}}\]
\[ \Rightarrow f\left( x \right) = 2\cos ec\left( {2x} \right)\]
Now, $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = \dfrac{d}{{dx}}\left( {2\cos ec\left( {2x} \right)} \right)$
Taking constant out of differentiation. We get,
$\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dx}}\left( {\cos ec\left( {2x} \right)} \right)$
Let $t = 2x$. Using the chain rule of differentiation, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dt}}\left( {\cos ec\left( t \right)} \right) \times \dfrac{{dt}}{{dx}}$
We know the differentiation of \[\cos ecx\] is \[ - \cos ecx \times \cot x\].
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( t \right) \times \cot \left( t \right)} \right] \times \dfrac{{dt}}{{dx}}$
Substituting t in the expression,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times \dfrac{{d\left( {2x} \right)}}{{dx}}$
Using the power rule of differentiation, we get $\dfrac{{d\left( {2x} \right)}}{{dx}} = 2$,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times 2$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
So, the correct answer is option (B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$.
Note: The trigonometric formulae such as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$ should be remembered to solve such questions. We should remember to substitute the variable introduced back at the final stage in order to get the correct answer. Chain rule of differentiation is followed for differentiating composite functions.
Complete step by step solution:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = \sqrt {{{\sec }^2}x + \cos e{c^2}x} $.
Now, we use the trigonometric formulae for cosecant and secant as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$. Hence, substituting $\sec x$ and $\cos ecx$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{1}{{{{\sin }^2}x}}} $
Taking LCM in the square root, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}}} $
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\sin }^2}x{{\cos }^2}x}}} $
\[ \Rightarrow f\left( x \right) = \dfrac{1}{{\sin x\cos x}}\]
Multiplying numerator and denominator by 2, we get,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{2\sin x\cos x}}\]
Using double angle formula for sine $\sin 2x = 2\sin x\cos x$,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{\sin 2x}}\]
\[ \Rightarrow f\left( x \right) = 2\cos ec\left( {2x} \right)\]
Now, $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = \dfrac{d}{{dx}}\left( {2\cos ec\left( {2x} \right)} \right)$
Taking constant out of differentiation. We get,
$\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dx}}\left( {\cos ec\left( {2x} \right)} \right)$
Let $t = 2x$. Using the chain rule of differentiation, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dt}}\left( {\cos ec\left( t \right)} \right) \times \dfrac{{dt}}{{dx}}$
We know the differentiation of \[\cos ecx\] is \[ - \cos ecx \times \cot x\].
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( t \right) \times \cot \left( t \right)} \right] \times \dfrac{{dt}}{{dx}}$
Substituting t in the expression,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times \dfrac{{d\left( {2x} \right)}}{{dx}}$
Using the power rule of differentiation, we get $\dfrac{{d\left( {2x} \right)}}{{dx}} = 2$,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times 2$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
So, the correct answer is option (B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$.
Note: The trigonometric formulae such as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$ should be remembered to solve such questions. We should remember to substitute the variable introduced back at the final stage in order to get the correct answer. Chain rule of differentiation is followed for differentiating composite functions.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

