
Find $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right)$.
A) $4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
C) $ - 4\cos ec\left( x \right) \times \cot \left( {2x} \right)$
D) None of these
Answer
162.9k+ views
Hint: We are required to differentiate a trigonometric function involving cosecant and secant functions. So, we first convert the secant and cosecant functions to sine and cosine to simplify the expression. Then, we use the half angle formula for sine to convert the function into easily integrable form and integrate the function by substitution.
Complete step by step solution:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = \sqrt {{{\sec }^2}x + \cos e{c^2}x} $.
Now, we use the trigonometric formulae for cosecant and secant as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$. Hence, substituting $\sec x$ and $\cos ecx$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{1}{{{{\sin }^2}x}}} $
Taking LCM in the square root, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}}} $
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\sin }^2}x{{\cos }^2}x}}} $
\[ \Rightarrow f\left( x \right) = \dfrac{1}{{\sin x\cos x}}\]
Multiplying numerator and denominator by 2, we get,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{2\sin x\cos x}}\]
Using double angle formula for sine $\sin 2x = 2\sin x\cos x$,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{\sin 2x}}\]
\[ \Rightarrow f\left( x \right) = 2\cos ec\left( {2x} \right)\]
Now, $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = \dfrac{d}{{dx}}\left( {2\cos ec\left( {2x} \right)} \right)$
Taking constant out of differentiation. We get,
$\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dx}}\left( {\cos ec\left( {2x} \right)} \right)$
Let $t = 2x$. Using the chain rule of differentiation, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dt}}\left( {\cos ec\left( t \right)} \right) \times \dfrac{{dt}}{{dx}}$
We know the differentiation of \[\cos ecx\] is \[ - \cos ecx \times \cot x\].
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( t \right) \times \cot \left( t \right)} \right] \times \dfrac{{dt}}{{dx}}$
Substituting t in the expression,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times \dfrac{{d\left( {2x} \right)}}{{dx}}$
Using the power rule of differentiation, we get $\dfrac{{d\left( {2x} \right)}}{{dx}} = 2$,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times 2$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
So, the correct answer is option (B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$.
Note: The trigonometric formulae such as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$ should be remembered to solve such questions. We should remember to substitute the variable introduced back at the final stage in order to get the correct answer. Chain rule of differentiation is followed for differentiating composite functions.
Complete step by step solution:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = \sqrt {{{\sec }^2}x + \cos e{c^2}x} $.
Now, we use the trigonometric formulae for cosecant and secant as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$. Hence, substituting $\sec x$ and $\cos ecx$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{1}{{{{\sin }^2}x}}} $
Taking LCM in the square root, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}}} $
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\sin }^2}x{{\cos }^2}x}}} $
\[ \Rightarrow f\left( x \right) = \dfrac{1}{{\sin x\cos x}}\]
Multiplying numerator and denominator by 2, we get,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{2\sin x\cos x}}\]
Using double angle formula for sine $\sin 2x = 2\sin x\cos x$,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{\sin 2x}}\]
\[ \Rightarrow f\left( x \right) = 2\cos ec\left( {2x} \right)\]
Now, $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = \dfrac{d}{{dx}}\left( {2\cos ec\left( {2x} \right)} \right)$
Taking constant out of differentiation. We get,
$\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dx}}\left( {\cos ec\left( {2x} \right)} \right)$
Let $t = 2x$. Using the chain rule of differentiation, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dt}}\left( {\cos ec\left( t \right)} \right) \times \dfrac{{dt}}{{dx}}$
We know the differentiation of \[\cos ecx\] is \[ - \cos ecx \times \cot x\].
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( t \right) \times \cot \left( t \right)} \right] \times \dfrac{{dt}}{{dx}}$
Substituting t in the expression,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times \dfrac{{d\left( {2x} \right)}}{{dx}}$
Using the power rule of differentiation, we get $\dfrac{{d\left( {2x} \right)}}{{dx}} = 2$,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times 2$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
So, the correct answer is option (B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$.
Note: The trigonometric formulae such as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$ should be remembered to solve such questions. We should remember to substitute the variable introduced back at the final stage in order to get the correct answer. Chain rule of differentiation is followed for differentiating composite functions.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
