
Find $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right)$.
A) $4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
C) $ - 4\cos ec\left( x \right) \times \cot \left( {2x} \right)$
D) None of these
Answer
232.8k+ views
Hint: We are required to differentiate a trigonometric function involving cosecant and secant functions. So, we first convert the secant and cosecant functions to sine and cosine to simplify the expression. Then, we use the half angle formula for sine to convert the function into easily integrable form and integrate the function by substitution.
Complete step by step solution:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = \sqrt {{{\sec }^2}x + \cos e{c^2}x} $.
Now, we use the trigonometric formulae for cosecant and secant as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$. Hence, substituting $\sec x$ and $\cos ecx$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{1}{{{{\sin }^2}x}}} $
Taking LCM in the square root, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}}} $
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\sin }^2}x{{\cos }^2}x}}} $
\[ \Rightarrow f\left( x \right) = \dfrac{1}{{\sin x\cos x}}\]
Multiplying numerator and denominator by 2, we get,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{2\sin x\cos x}}\]
Using double angle formula for sine $\sin 2x = 2\sin x\cos x$,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{\sin 2x}}\]
\[ \Rightarrow f\left( x \right) = 2\cos ec\left( {2x} \right)\]
Now, $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = \dfrac{d}{{dx}}\left( {2\cos ec\left( {2x} \right)} \right)$
Taking constant out of differentiation. We get,
$\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dx}}\left( {\cos ec\left( {2x} \right)} \right)$
Let $t = 2x$. Using the chain rule of differentiation, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dt}}\left( {\cos ec\left( t \right)} \right) \times \dfrac{{dt}}{{dx}}$
We know the differentiation of \[\cos ecx\] is \[ - \cos ecx \times \cot x\].
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( t \right) \times \cot \left( t \right)} \right] \times \dfrac{{dt}}{{dx}}$
Substituting t in the expression,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times \dfrac{{d\left( {2x} \right)}}{{dx}}$
Using the power rule of differentiation, we get $\dfrac{{d\left( {2x} \right)}}{{dx}} = 2$,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times 2$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
So, the correct answer is option (B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$.
Note: The trigonometric formulae such as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$ should be remembered to solve such questions. We should remember to substitute the variable introduced back at the final stage in order to get the correct answer. Chain rule of differentiation is followed for differentiating composite functions.
Complete step by step solution:
Let us assume this function as $f\left( x \right)$.
So, we have, $f\left( x \right) = \sqrt {{{\sec }^2}x + \cos e{c^2}x} $.
Now, we use the trigonometric formulae for cosecant and secant as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$. Hence, substituting $\sec x$ and $\cos ecx$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\cos }^2}x}} + \dfrac{1}{{{{\sin }^2}x}}} $
Taking LCM in the square root, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{{{\sin }^2}x{{\cos }^2}x}}} $
Using the trigonometric identity ${\sin ^2}x + {\cos ^2}x = 1$, we get,
$ \Rightarrow f\left( x \right) = \sqrt {\dfrac{1}{{{{\sin }^2}x{{\cos }^2}x}}} $
\[ \Rightarrow f\left( x \right) = \dfrac{1}{{\sin x\cos x}}\]
Multiplying numerator and denominator by 2, we get,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{2\sin x\cos x}}\]
Using double angle formula for sine $\sin 2x = 2\sin x\cos x$,
\[ \Rightarrow f\left( x \right) = \dfrac{2}{{\sin 2x}}\]
\[ \Rightarrow f\left( x \right) = 2\cos ec\left( {2x} \right)\]
Now, $\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = \dfrac{d}{{dx}}\left( {2\cos ec\left( {2x} \right)} \right)$
Taking constant out of differentiation. We get,
$\dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dx}}\left( {\cos ec\left( {2x} \right)} \right)$
Let $t = 2x$. Using the chain rule of differentiation, we get,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\dfrac{d}{{dt}}\left( {\cos ec\left( t \right)} \right) \times \dfrac{{dt}}{{dx}}$
We know the differentiation of \[\cos ecx\] is \[ - \cos ecx \times \cot x\].
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( t \right) \times \cot \left( t \right)} \right] \times \dfrac{{dt}}{{dx}}$
Substituting t in the expression,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times \dfrac{{d\left( {2x} \right)}}{{dx}}$
Using the power rule of differentiation, we get $\dfrac{{d\left( {2x} \right)}}{{dx}} = 2$,
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = 2\left[ { - \cos ec\left( {2x} \right) \times \cot \left( {2x} \right)} \right] \times 2$
$ \Rightarrow \dfrac{d}{{dx}}\left( {\sqrt {{{\sec }^2}x + \cos e{c^2}x} } \right) = - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$
So, the correct answer is option (B) $ - 4\cos ec\left( {2x} \right) \times \cot \left( {2x} \right)$.
Note: The trigonometric formulae such as $\sec x = \dfrac{1}{{\cos x}}$ and $\cos ecx = \dfrac{1}{{\sin x}}$ should be remembered to solve such questions. We should remember to substitute the variable introduced back at the final stage in order to get the correct answer. Chain rule of differentiation is followed for differentiating composite functions.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

