
Find $\dfrac{d}{d x}\left(x^{3} \tan ^{2} \dfrac{x}{2}\right)=$.
(1) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3x{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(2) ${{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(3) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(4) none of these
Answer
219k+ views
Hint: We can solve this using the product rule. That is $\dfrac{d}{d x} f(x) \cdot g(x)=\left[g(x) \times f^{\prime}(x)+f(x) \times g^{\prime}(x)\right]$. Here \[f(x)={{x}^{3}}\] and \[g(x)={{\tan }^{2}}\left( \dfrac{x}{2} \right)\]. After applying this rule and then by using the chain rule extended formula, we can find the solution for the given question.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

