
Find $\dfrac{d}{d x}\left(x^{3} \tan ^{2} \dfrac{x}{2}\right)=$.
(1) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3x{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(2) ${{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(3) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(4) none of these
Answer
220.2k+ views
Hint: We can solve this using the product rule. That is $\dfrac{d}{d x} f(x) \cdot g(x)=\left[g(x) \times f^{\prime}(x)+f(x) \times g^{\prime}(x)\right]$. Here \[f(x)={{x}^{3}}\] and \[g(x)={{\tan }^{2}}\left( \dfrac{x}{2} \right)\]. After applying this rule and then by using the chain rule extended formula, we can find the solution for the given question.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

What Are Elastic Collisions in One Dimension?

Understanding Geostationary and Geosynchronous Satellites

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding Excess Pressure Inside a Liquid Drop

Understanding Elastic Collisions in Two Dimensions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Difference Between Exothermic and Endothermic Reactions: Key Differences, Examples & Diagrams

