
Find $\dfrac{d}{d x}\left(x^{3} \tan ^{2} \dfrac{x}{2}\right)=$.
(1) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3x{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(2) ${{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(3) ${{x}^{3}}\tan \left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
(4) none of these
Answer
163.8k+ views
Hint: We can solve this using the product rule. That is $\dfrac{d}{d x} f(x) \cdot g(x)=\left[g(x) \times f^{\prime}(x)+f(x) \times g^{\prime}(x)\right]$. Here \[f(x)={{x}^{3}}\] and \[g(x)={{\tan }^{2}}\left( \dfrac{x}{2} \right)\]. After applying this rule and then by using the chain rule extended formula, we can find the solution for the given question.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Formula used: $\dfrac{{d(f(x).g(x))}}{{dx}} = g(x) \times {f’}(x) + f(x) \times {g’}(x)$
Complete Step by step solution:
Let $y={{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)$
Differentiate with respect to x.
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( {{x}^{3}}{{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)$
Applying the product rule we have,
\[\dfrac{dy}{dx}=\dfrac{d{{x}^{3}}}{dx}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\]
We know that the differentiation of \[\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}\]. Applying this we have,
\[\dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right).{{x}^{3}}\,\,\,\,--(1)\].
But \[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)\] can be solved by chain rule extended formula.
That is $\dfrac{d}{d x}[f(g(h(x)))]=f^{\prime}(g(h(x))) g^{\prime}(h(x)) h^{\prime}(x)$, then we have
\[\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).\dfrac{d}{dx}\left( \tan \left( \dfrac{x}{2} \right) \right)\]
We know that differentiation of \[\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\], then we have
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right)\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=2\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).\dfrac{1}{2}\]
\[\dfrac{d}{dx}\left( {{\tan }^{2}}\left( \dfrac{x}{2} \right) \right)=\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right)\]
Substituting this in equation 1 we have,
\[\Rightarrow \dfrac{dy}{dx}=3{{x}^{2}}.{{\tan }^{2}}\left( \dfrac{x}{2} \right)+\tan \left( \dfrac{x}{2} \right).{{\sec }^{2}}\left( \dfrac{x}{2} \right).{{x}^{3}}\]
\[\Rightarrow \dfrac{dy}{dx}={{x}^{3}}{{\tan }}\left( \dfrac{x}{2} \right){{\sec }^{2}}\left( \dfrac{x}{2} \right)+3{{x}^{2}}{{\tan }^{2}}\left( \dfrac{x}{2} \right)\]
Hence, option (3) is correct.
Note: We can differentiate between two or more functions in a given function using product rules. For the sum of the two functions, the formula for the product rule appears to be as follows. The same pattern applies if the three functions have produced a product. So, we need to apply the extended chain rule. Also, note that the differentiation of any constant is zero.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
