
Find $\dfrac{2}{1}\cdot \dfrac{1}{3}+\dfrac{3}{2}\cdot \dfrac{1}{9}+\dfrac{4}{3}\cdot \dfrac{1}{27}+\dfrac{5}{4}\cdot \dfrac{1}{81}+...\infty =$
A.$\dfrac{1}{2}-{{\log }_{e}}\dfrac{2}{3}$
B. $-{{\log }_{e}}\dfrac{2}{3}$
C. $\dfrac{1}{2}+{{\log }_{e}}\left( \dfrac{2}{3} \right)$
D. None of these
Answer
163.2k+ views
Hint: In this question, we are to find the sum of the given series. Here the given series is a logarithmic series. So, by applying the appropriate formula, the required sum is to be calculated. In this question, we need to find its $nth$ term and then apply the logarithmic series formula, we get the required sum.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given expansion is
$\dfrac{2}{1}\cdot \dfrac{1}{3}+\dfrac{3}{2}\cdot \dfrac{1}{9}+\dfrac{4}{3}\cdot \dfrac{1}{27}+\dfrac{5}{4}\cdot \dfrac{1}{81}+...\infty $
The $nth$ term of the above expansion is
${{t}_{n}}=\dfrac{n+1}{n}\cdot \dfrac{1}{{{3}^{n}}}$
So, we can write the given expansion as
$\dfrac{2}{1}\cdot \dfrac{1}{3}+\dfrac{3}{2}\cdot \dfrac{1}{9}+\dfrac{4}{3}\cdot \dfrac{1}{27}+\dfrac{5}{4}\cdot \dfrac{1}{81}+...\infty =\sum\limits_{n=1}^{\infty }{\left( \dfrac{n+1}{n}\cdot \dfrac{1}{{{3}^{n}}} \right)}$
On simplifying the obtained summation, we get
\[\begin{align}
& \Rightarrow \sum\limits_{n=1}^{\infty }{\left( \dfrac{n-1}{n}\cdot \dfrac{1}{{{3}^{n}}} \right)} \\
& \Rightarrow \sum\limits_{n=1}^{\infty }{\left( 1-\dfrac{1}{n} \right)}\dfrac{1}{{{3}^{n}}} \\
& \Rightarrow \sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}-\sum\limits_{n=1}^{\infty }{\dfrac{1}{n\cdot {{3}^{n}}}}\text{ }...(1) \\
\end{align}\]
Since we know that, the first sum forms an infinite geometric series i.e.,
$\sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}=\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+...\infty $
So, its sum to infinity is calculated by ${{S}_{\infty }}=\dfrac{a}{1-r}$
Thus, on substituting, we get
$\sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}=\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+...\infty =\dfrac{\dfrac{1}{3}}{1-\dfrac{1}{3}}=\dfrac{1}{2}\text{ }...(2)$
And, the second sum forms an infinite logarithmic series i.e.,
\[\sum\limits_{n=1}^{\infty }{\dfrac{1}{n\cdot {{3}^{n}}}=\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{n}}}{n}}}=\dfrac{1}{3}+\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{3}}}{3}+....+\infty \]
Then, we can apply the formula:
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+... \\
\end{align}$
So, we can write the logarithmic expansion as
$\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{n}}}{n}}=-{{\log }_{e}}(1-\dfrac{1}{3})=-{{\log }_{e}}\left( \dfrac{2}{3} \right)\text{ }...(3)$
On substituting (2) and (3) in (4), we get
\[\sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}-\sum\limits_{n=1}^{\infty }{\dfrac{1}{n\cdot {{3}^{n}}}}=\dfrac{1}{2}-{{\log }_{e}}\left( \dfrac{2}{3} \right)\]
Therefore,
$\dfrac{2}{1}\cdot \dfrac{1}{3}+\dfrac{3}{2}\cdot \dfrac{1}{9}+\dfrac{4}{3}\cdot \dfrac{1}{27}+\dfrac{5}{4}\cdot \dfrac{1}{81}+...\infty =\dfrac{1}{2}-{{\log }_{e}}\left( \dfrac{2}{3} \right)$
Option ‘A’ is correct
Note: In this type of question we need to find the $nth$ term of the given series by observing the given terms. Then, we can able to find that it may be a logarithmic series. Otherwise, we do not understand. Once we know the $nth$ term, then we can find the sum by simply applying summation to the obtained $nth$ term for $n=1\to \infty $.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given expansion is
$\dfrac{2}{1}\cdot \dfrac{1}{3}+\dfrac{3}{2}\cdot \dfrac{1}{9}+\dfrac{4}{3}\cdot \dfrac{1}{27}+\dfrac{5}{4}\cdot \dfrac{1}{81}+...\infty $
The $nth$ term of the above expansion is
${{t}_{n}}=\dfrac{n+1}{n}\cdot \dfrac{1}{{{3}^{n}}}$
So, we can write the given expansion as
$\dfrac{2}{1}\cdot \dfrac{1}{3}+\dfrac{3}{2}\cdot \dfrac{1}{9}+\dfrac{4}{3}\cdot \dfrac{1}{27}+\dfrac{5}{4}\cdot \dfrac{1}{81}+...\infty =\sum\limits_{n=1}^{\infty }{\left( \dfrac{n+1}{n}\cdot \dfrac{1}{{{3}^{n}}} \right)}$
On simplifying the obtained summation, we get
\[\begin{align}
& \Rightarrow \sum\limits_{n=1}^{\infty }{\left( \dfrac{n-1}{n}\cdot \dfrac{1}{{{3}^{n}}} \right)} \\
& \Rightarrow \sum\limits_{n=1}^{\infty }{\left( 1-\dfrac{1}{n} \right)}\dfrac{1}{{{3}^{n}}} \\
& \Rightarrow \sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}-\sum\limits_{n=1}^{\infty }{\dfrac{1}{n\cdot {{3}^{n}}}}\text{ }...(1) \\
\end{align}\]
Since we know that, the first sum forms an infinite geometric series i.e.,
$\sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}=\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+...\infty $
So, its sum to infinity is calculated by ${{S}_{\infty }}=\dfrac{a}{1-r}$
Thus, on substituting, we get
$\sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}=\dfrac{1}{3}+\dfrac{1}{{{3}^{2}}}+\dfrac{1}{{{3}^{3}}}+...\infty =\dfrac{\dfrac{1}{3}}{1-\dfrac{1}{3}}=\dfrac{1}{2}\text{ }...(2)$
And, the second sum forms an infinite logarithmic series i.e.,
\[\sum\limits_{n=1}^{\infty }{\dfrac{1}{n\cdot {{3}^{n}}}=\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{n}}}{n}}}=\dfrac{1}{3}+\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{2}}}{2}+\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{3}}}{3}+....+\infty \]
Then, we can apply the formula:
$\begin{align}
& {{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-... \\
& \Rightarrow -{{\log }_{e}}(1-x)=x+\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+... \\
\end{align}$
So, we can write the logarithmic expansion as
$\sum\limits_{n=1}^{\infty }{\dfrac{{{\left( {}^{1}/{}_{3} \right)}^{n}}}{n}}=-{{\log }_{e}}(1-\dfrac{1}{3})=-{{\log }_{e}}\left( \dfrac{2}{3} \right)\text{ }...(3)$
On substituting (2) and (3) in (4), we get
\[\sum\limits_{n=1}^{\infty }{\dfrac{1}{{{3}^{n}}}}-\sum\limits_{n=1}^{\infty }{\dfrac{1}{n\cdot {{3}^{n}}}}=\dfrac{1}{2}-{{\log }_{e}}\left( \dfrac{2}{3} \right)\]
Therefore,
$\dfrac{2}{1}\cdot \dfrac{1}{3}+\dfrac{3}{2}\cdot \dfrac{1}{9}+\dfrac{4}{3}\cdot \dfrac{1}{27}+\dfrac{5}{4}\cdot \dfrac{1}{81}+...\infty =\dfrac{1}{2}-{{\log }_{e}}\left( \dfrac{2}{3} \right)$
Option ‘A’ is correct
Note: In this type of question we need to find the $nth$ term of the given series by observing the given terms. Then, we can able to find that it may be a logarithmic series. Otherwise, we do not understand. Once we know the $nth$ term, then we can find the sum by simply applying summation to the obtained $nth$ term for $n=1\to \infty $.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025 Notes
