
Find $\dfrac{1}{2}{{x}^{2}}+\dfrac{2}{3}{{x}^{3}}+\dfrac{3}{4}{{x}^{4}}+......\infty =$
A. $\dfrac{x}{1+x}-{{\log }_{e}}(1-x)$
B. $\dfrac{x}{1+x}+{{\log }_{e}}(1-x)$
C. $\dfrac{x}{1-x}-{{\log }_{e}}(1-x)$
D. $\dfrac{x}{1-x}+{{\log }_{e}}(1-x)$
Answer
232.8k+ views
Hint: In this question, we are to find the sum of the given series. To solve this, the given series is to be rewritten in such a way that we can frame the series into a particular progression. So, by applying the appropriate formula, the required sum is to be calculated.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given expansion is
$\dfrac{1}{2}{{x}^{2}}+\dfrac{2}{3}{{x}^{3}}+\dfrac{3}{4}{{x}^{4}}+......\infty $
The above sequence is rewritten as
$\begin{align}
& \Rightarrow \left( 1-\dfrac{1}{2} \right){{x}^{2}}+\left( 1-\dfrac{1}{3} \right){{x}^{3}}+\left( 1-\dfrac{1}{4} \right){{x}^{4}}+...\infty \\
& \Rightarrow \left( {{x}^{2}}+{{x}^{3}}+{{x}^{4}}+....\infty \right)-\left( \dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+...\infty \right) \\
\end{align}$
In the above expansion, the first sequence is in geometric progression. So, we can find its sum by ${{S}_{\infty }}=\dfrac{a}{1-r}$. I.e.,
$\left( {{x}^{2}}+{{x}^{3}}+{{x}^{4}}+....\infty \right)=\dfrac{{{x}^{2}}}{1-x}\text{ }...(1)$
The second sequence is a logarithmic series. So, we can write
$\left( \dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right)=\{-{{\log }_{e}}(1-x)-x\}\text{ }...(2)$
Substituting (1) and (2) in the rewritten sequence, we get
$\begin{align}
& \Rightarrow \left( {{x}^{2}}+{{x}^{3}}+{{x}^{4}}+....\infty \right)-\left( \dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+...\infty \right)=\dfrac{{{x}^{2}}}{1-x}-\left\{ -{{\log }_{e}}(1-x)-x \right\} \\
& \Rightarrow \dfrac{{{x}^{2}}}{1-x}+x+{{\log }_{e}}(1-x) \\
& \Rightarrow \dfrac{{{x}^{2}}+x(1-x)}{1-x}+{{\log }_{e}}(1-x) \\
& \Rightarrow \dfrac{x}{1-x}+{{\log }_{e}}(1-x) \\
\end{align}$
Thus, the sum of the sequence is
$\dfrac{1}{2}{{x}^{2}}+\dfrac{2}{3}{{x}^{3}}+\dfrac{3}{4}{{x}^{4}}+......\infty =\dfrac{x}{1-x}+{{\log }_{e}}(1-x)$
Option ‘D’ is correct
Note: The given series is rewritten in order to get the appropriate progression in the series. Once the series represents a particular progression, we can find the sum of that series easily by applying the formula. Here the series is rewritten as the sum of the geometric series and the logarithmic series. So, by applying their formulae, we get the required sum. In such type of question, we need to observe the given series, so that we are able to find its progression. Then, the process of solving becomes easy for us.
Formula Used:Logarithmic series:
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1+x)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+...$
If $x\in R$ and $\left| x \right|<1$, then the expansion is
${{\log }_{e}}(1-x)=-x-\dfrac{{{x}^{2}}}{2}-\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}-...$
Some important formulae:
If $\left| x \right|<1$ then ${{\log }_{e}}\dfrac{1+x}{1-x}=2\left( x+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{5}}}{5}+... \right)$
If $x>1$ then ${{\log }_{e}}\dfrac{x+1}{x-1}=2\left( \dfrac{1}{x}+\dfrac{1}{3{{x}^{3}}}+\dfrac{1}{5{{x}^{5}}}+... \right)$
Complete step by step solution:Given expansion is
$\dfrac{1}{2}{{x}^{2}}+\dfrac{2}{3}{{x}^{3}}+\dfrac{3}{4}{{x}^{4}}+......\infty $
The above sequence is rewritten as
$\begin{align}
& \Rightarrow \left( 1-\dfrac{1}{2} \right){{x}^{2}}+\left( 1-\dfrac{1}{3} \right){{x}^{3}}+\left( 1-\dfrac{1}{4} \right){{x}^{4}}+...\infty \\
& \Rightarrow \left( {{x}^{2}}+{{x}^{3}}+{{x}^{4}}+....\infty \right)-\left( \dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+...\infty \right) \\
\end{align}$
In the above expansion, the first sequence is in geometric progression. So, we can find its sum by ${{S}_{\infty }}=\dfrac{a}{1-r}$. I.e.,
$\left( {{x}^{2}}+{{x}^{3}}+{{x}^{4}}+....\infty \right)=\dfrac{{{x}^{2}}}{1-x}\text{ }...(1)$
The second sequence is a logarithmic series. So, we can write
$\left( \dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+... \right)=\{-{{\log }_{e}}(1-x)-x\}\text{ }...(2)$
Substituting (1) and (2) in the rewritten sequence, we get
$\begin{align}
& \Rightarrow \left( {{x}^{2}}+{{x}^{3}}+{{x}^{4}}+....\infty \right)-\left( \dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}+\dfrac{{{x}^{4}}}{4}+...\infty \right)=\dfrac{{{x}^{2}}}{1-x}-\left\{ -{{\log }_{e}}(1-x)-x \right\} \\
& \Rightarrow \dfrac{{{x}^{2}}}{1-x}+x+{{\log }_{e}}(1-x) \\
& \Rightarrow \dfrac{{{x}^{2}}+x(1-x)}{1-x}+{{\log }_{e}}(1-x) \\
& \Rightarrow \dfrac{x}{1-x}+{{\log }_{e}}(1-x) \\
\end{align}$
Thus, the sum of the sequence is
$\dfrac{1}{2}{{x}^{2}}+\dfrac{2}{3}{{x}^{3}}+\dfrac{3}{4}{{x}^{4}}+......\infty =\dfrac{x}{1-x}+{{\log }_{e}}(1-x)$
Option ‘D’ is correct
Note: The given series is rewritten in order to get the appropriate progression in the series. Once the series represents a particular progression, we can find the sum of that series easily by applying the formula. Here the series is rewritten as the sum of the geometric series and the logarithmic series. So, by applying their formulae, we get the required sum. In such type of question, we need to observe the given series, so that we are able to find its progression. Then, the process of solving becomes easy for us.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

