
How do you find c in a linear equation?
Answer
164.4k+ views
Hint: A straight line's general equation is \[y = mx + c\], where m denotes the gradient and y = c denotes the point at which the line crosses the y-axis. On the y-axis, this value c is referred to as the intercept. \[y = mx + c\], represents the equation of a straight line with gradient m and intercept c on the y-axis.
Formula used:
The slope intercept of line is \[y = mx + c\].
Complete step by step Solution:
We know that, c of a linear equation denotes the y-intercept of linear equation.
If an equation in the form \[\dfrac{x}{a} + \dfrac{y}{b} = 1\].
The y-intercept of the linear equation is \[b\].
The value of c is equal to b.
The slope-intercept form of a linear equation is \[y = mx + c\].
The y intercept of the linear equation is c.
If a linear equation is in the form \[mx + ny = l\].
Subtract \[mx\] from both sides of the equation:
\[mx + ny - mx = l - mx\]
\[ \Rightarrow ny = l - mx\]
Divide both sides by n:
\[ \Rightarrow y = - \dfrac{m}{n}x + \dfrac{l}{n}\]
Compare the above equation with \[y = mx + c\]
\[c = \dfrac{l}{n}\]
The y-intercept of \[mx + ny = l\] or the value of c is \[\dfrac{l}{n}\].
Additional information: A linear equation is an equation such that the highest power of the variable or variables is 1.
The linear equation with one variable is \[y = a\].
The linear equation with two variables is \[ax + by = c\].
The linear equation with three variables is \[ax + by + cz = d\].
Note: Students often confused with y-intercept and x-intercept. The x-intercept of mx+ny=l is \[\dfrac{l}{m}\] and y-intercept is \[\dfrac{l}{n}\].
Formula used:
The slope intercept of line is \[y = mx + c\].
Complete step by step Solution:
We know that, c of a linear equation denotes the y-intercept of linear equation.
If an equation in the form \[\dfrac{x}{a} + \dfrac{y}{b} = 1\].
The y-intercept of the linear equation is \[b\].
The value of c is equal to b.
The slope-intercept form of a linear equation is \[y = mx + c\].
The y intercept of the linear equation is c.
If a linear equation is in the form \[mx + ny = l\].
Subtract \[mx\] from both sides of the equation:
\[mx + ny - mx = l - mx\]
\[ \Rightarrow ny = l - mx\]
Divide both sides by n:
\[ \Rightarrow y = - \dfrac{m}{n}x + \dfrac{l}{n}\]
Compare the above equation with \[y = mx + c\]
\[c = \dfrac{l}{n}\]
The y-intercept of \[mx + ny = l\] or the value of c is \[\dfrac{l}{n}\].
Additional information: A linear equation is an equation such that the highest power of the variable or variables is 1.
The linear equation with one variable is \[y = a\].
The linear equation with two variables is \[ax + by = c\].
The linear equation with three variables is \[ax + by + cz = d\].
Note: Students often confused with y-intercept and x-intercept. The x-intercept of mx+ny=l is \[\dfrac{l}{m}\] and y-intercept is \[\dfrac{l}{n}\].
Recently Updated Pages
Complex Numbers and Quadratic Equations Chapter For JEE Main Maths

Polymers Chapter for JEE Main Chemistry

Difference Between Electrophile and Nucleophile: JEE Main 2024

Hydrocarbons Chapter for JEE Main Chemistry

Chemistry in Everyday Life Chapter for JEE Main Chemistry

Chemical Thermodynamics Chapter for JEE Main Chemistry

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

NIT Cutoff Percentile for 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025 CutOff for NIT - Predicted Ranks and Scores

Other Pages
NCERT Solutions for Class 9 Maths In Hindi Chapter 1 Number System

NCERT Solutions for Class 9 Maths Chapter 11 Surface Area and Volume

NCERT Solutions for Class 9 Maths Chapter 12 Statistics

NCERT Solutions for Class 9 Maths Chapter 10 Heron'S Formula

NCERT Solutions for Class 9 Maths Chapter 9 Circles

NCERT Solutions for Class 9 Maths In Hindi Chapter 2 Polynomials
