
Evaluate the following limit
$\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{2x+3}}{x+3}$
Answer
205.5k+ views
Hint: Find Left Hand Limit and Right Hand Limit. Use $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$ and $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$. Hence check whether Left Hand Limit equals Right Hand Limit or not.
Hence check whether the limit exists or not.
Complete step-by-step solution -
Limit of a function: Limit of a function f(x) is said to be equal to a if at point x=b, for all $\varepsilon >0$, there exists a $\delta >0$ such that $\left| f\left( x \right)-a \right|<\varepsilon $|f(x)-a|
Properties of the limit of a function:
[1] If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ exists, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)$ and are equal to $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ and $\left( \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right)\left( \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) \right)$ respectively. If $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$, then $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$ also exists and is equal to $\dfrac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)}$.
[2] If the limit of a function exists, then it is unique.
Here $f\left( x \right)=\dfrac{\sqrt{2x+3}}{x+3}$ and b = 3.
Claim: $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{1}{2}$
Proof:
Consider $g\left( x \right)=\sqrt{2x+3}$ and $h\left( x \right)=x+3$
Claim 1: $\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)=3$
Observe that $\left| \sqrt{2x+3}-3 \right|=\left| \dfrac{2x+3-9}{\sqrt{2x+3}+3} \right|=\left| \dfrac{2x-6}{\sqrt{2x+3}+3} \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|$
Since $\sqrt{x}\ge 0$, we have
$\left| \sqrt{2x+3}-3 \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|\le 2\left| \dfrac{x-3}{3} \right|\le \dfrac{2}{3}\left| x-3 \right|$
Now for $\varepsilon >0$, choose $\delta =\dfrac{3}{2}\varepsilon $, we have
Whenever $\left| x-3 \right|<\delta =\dfrac{3}{2}\varepsilon \Rightarrow \dfrac{2}{3}\left| x-3 \right|<\varepsilon $
Bit since $\left| \sqrt{2x+3}-3 \right|\le \dfrac{2}{3}\left| x-3 \right|$, we have
$\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence whenever $\left| x-3 \right|<\delta $, we have $\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence we have $\underset{x\to 3}{\mathop{\lim }}\,\sqrt{2x+3}=3$
Claim 2: $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Observe that $\left| x+3-6 \right|=\left| x-3 \right|$
So if we choose $\delta =\varepsilon $, we have $\forall \varepsilon >0,\exists \delta =\varepsilon >0$ such that $\left| x+6-3 \right|<\varepsilon $ whenever $\left| x-3 \right|<\delta $
Hence $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Hence $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)}{\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)}=\dfrac{3}{6}=\dfrac{1}{2}$
Hence proved.
Note: Alternatively, we have
$\underset{x\to 3+}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( h+3 \right)+3}}{h+3+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2h+9}}{h+6}=\dfrac{\sqrt{2\left( 0 \right)+9}}{0+6}=\dfrac{3}{6}=\dfrac{1}{2}$ and $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( 3-h \right)+3}}{3-h+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{9-2h}}{6-h}=\dfrac{\sqrt{9-0}}{6}=\dfrac{1}{2}$
Hence LHL = RHL $=\dfrac{1}{2}$
Hence the limit exists and is equal to $\dfrac{1}{2}$.
Hence check whether the limit exists or not.
Complete step-by-step solution -
Limit of a function: Limit of a function f(x) is said to be equal to a if at point x=b, for all $\varepsilon >0$, there exists a $\delta >0$ such that $\left| f\left( x \right)-a \right|<\varepsilon $|f(x)-a|
Properties of the limit of a function:
[1] If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ exists, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)$ and are equal to $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ and $\left( \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right)\left( \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) \right)$ respectively. If $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$, then $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$ also exists and is equal to $\dfrac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)}$.
[2] If the limit of a function exists, then it is unique.
Here $f\left( x \right)=\dfrac{\sqrt{2x+3}}{x+3}$ and b = 3.
Claim: $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{1}{2}$
Proof:
Consider $g\left( x \right)=\sqrt{2x+3}$ and $h\left( x \right)=x+3$
Claim 1: $\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)=3$
Observe that $\left| \sqrt{2x+3}-3 \right|=\left| \dfrac{2x+3-9}{\sqrt{2x+3}+3} \right|=\left| \dfrac{2x-6}{\sqrt{2x+3}+3} \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|$
Since $\sqrt{x}\ge 0$, we have
$\left| \sqrt{2x+3}-3 \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|\le 2\left| \dfrac{x-3}{3} \right|\le \dfrac{2}{3}\left| x-3 \right|$
Now for $\varepsilon >0$, choose $\delta =\dfrac{3}{2}\varepsilon $, we have
Whenever $\left| x-3 \right|<\delta =\dfrac{3}{2}\varepsilon \Rightarrow \dfrac{2}{3}\left| x-3 \right|<\varepsilon $
Bit since $\left| \sqrt{2x+3}-3 \right|\le \dfrac{2}{3}\left| x-3 \right|$, we have
$\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence whenever $\left| x-3 \right|<\delta $, we have $\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence we have $\underset{x\to 3}{\mathop{\lim }}\,\sqrt{2x+3}=3$
Claim 2: $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Observe that $\left| x+3-6 \right|=\left| x-3 \right|$
So if we choose $\delta =\varepsilon $, we have $\forall \varepsilon >0,\exists \delta =\varepsilon >0$ such that $\left| x+6-3 \right|<\varepsilon $ whenever $\left| x-3 \right|<\delta $
Hence $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Hence $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)}{\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)}=\dfrac{3}{6}=\dfrac{1}{2}$
Hence proved.
Note: Alternatively, we have
$\underset{x\to 3+}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( h+3 \right)+3}}{h+3+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2h+9}}{h+6}=\dfrac{\sqrt{2\left( 0 \right)+9}}{0+6}=\dfrac{3}{6}=\dfrac{1}{2}$ and $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( 3-h \right)+3}}{3-h+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{9-2h}}{6-h}=\dfrac{\sqrt{9-0}}{6}=\dfrac{1}{2}$
Hence LHL = RHL $=\dfrac{1}{2}$
Hence the limit exists and is equal to $\dfrac{1}{2}$.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Atomic Structure: Definition, Models, and Examples

JEE Main 2026 Session 1 Form Correction – Procedure, Fees & Editing Guidelines

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

Collision: Meaning, Types & Examples in Physics

