
Evaluate the following limit
$\underset{x\to 3}{\mathop{\lim }}\,\dfrac{\sqrt{2x+3}}{x+3}$
Answer
232.8k+ views
Hint: Find Left Hand Limit and Right Hand Limit. Use $\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a+h \right)$ and $\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)$. Hence check whether Left Hand Limit equals Right Hand Limit or not.
Hence check whether the limit exists or not.
Complete step-by-step solution -
Limit of a function: Limit of a function f(x) is said to be equal to a if at point x=b, for all $\varepsilon >0$, there exists a $\delta >0$ such that $\left| f\left( x \right)-a \right|<\varepsilon $|f(x)-a|
Properties of the limit of a function:
[1] If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ exists, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)$ and are equal to $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ and $\left( \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right)\left( \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) \right)$ respectively. If $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$, then $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$ also exists and is equal to $\dfrac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)}$.
[2] If the limit of a function exists, then it is unique.
Here $f\left( x \right)=\dfrac{\sqrt{2x+3}}{x+3}$ and b = 3.
Claim: $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{1}{2}$
Proof:
Consider $g\left( x \right)=\sqrt{2x+3}$ and $h\left( x \right)=x+3$
Claim 1: $\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)=3$
Observe that $\left| \sqrt{2x+3}-3 \right|=\left| \dfrac{2x+3-9}{\sqrt{2x+3}+3} \right|=\left| \dfrac{2x-6}{\sqrt{2x+3}+3} \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|$
Since $\sqrt{x}\ge 0$, we have
$\left| \sqrt{2x+3}-3 \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|\le 2\left| \dfrac{x-3}{3} \right|\le \dfrac{2}{3}\left| x-3 \right|$
Now for $\varepsilon >0$, choose $\delta =\dfrac{3}{2}\varepsilon $, we have
Whenever $\left| x-3 \right|<\delta =\dfrac{3}{2}\varepsilon \Rightarrow \dfrac{2}{3}\left| x-3 \right|<\varepsilon $
Bit since $\left| \sqrt{2x+3}-3 \right|\le \dfrac{2}{3}\left| x-3 \right|$, we have
$\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence whenever $\left| x-3 \right|<\delta $, we have $\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence we have $\underset{x\to 3}{\mathop{\lim }}\,\sqrt{2x+3}=3$
Claim 2: $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Observe that $\left| x+3-6 \right|=\left| x-3 \right|$
So if we choose $\delta =\varepsilon $, we have $\forall \varepsilon >0,\exists \delta =\varepsilon >0$ such that $\left| x+6-3 \right|<\varepsilon $ whenever $\left| x-3 \right|<\delta $
Hence $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Hence $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)}{\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)}=\dfrac{3}{6}=\dfrac{1}{2}$
Hence proved.
Note: Alternatively, we have
$\underset{x\to 3+}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( h+3 \right)+3}}{h+3+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2h+9}}{h+6}=\dfrac{\sqrt{2\left( 0 \right)+9}}{0+6}=\dfrac{3}{6}=\dfrac{1}{2}$ and $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( 3-h \right)+3}}{3-h+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{9-2h}}{6-h}=\dfrac{\sqrt{9-0}}{6}=\dfrac{1}{2}$
Hence LHL = RHL $=\dfrac{1}{2}$
Hence the limit exists and is equal to $\dfrac{1}{2}$.
Hence check whether the limit exists or not.
Complete step-by-step solution -
Limit of a function: Limit of a function f(x) is said to be equal to a if at point x=b, for all $\varepsilon >0$, there exists a $\delta >0$ such that $\left| f\left( x \right)-a \right|<\varepsilon $|f(x)-a|
Properties of the limit of a function:
[1] If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)$ exists and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ exists, then so do the limits $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+g\left( x \right),\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)$ and are equal to $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$ and $\left( \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right)\left( \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) \right)$ respectively. If $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$, then $\underset{x\to a}{\mathop{\lim }}\,\dfrac{f\left( x \right)}{g\left( x \right)}$ also exists and is equal to $\dfrac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)}$.
[2] If the limit of a function exists, then it is unique.
Here $f\left( x \right)=\dfrac{\sqrt{2x+3}}{x+3}$ and b = 3.
Claim: $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{1}{2}$
Proof:
Consider $g\left( x \right)=\sqrt{2x+3}$ and $h\left( x \right)=x+3$
Claim 1: $\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)=3$
Observe that $\left| \sqrt{2x+3}-3 \right|=\left| \dfrac{2x+3-9}{\sqrt{2x+3}+3} \right|=\left| \dfrac{2x-6}{\sqrt{2x+3}+3} \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|$
Since $\sqrt{x}\ge 0$, we have
$\left| \sqrt{2x+3}-3 \right|=2\left| \dfrac{x-3}{\sqrt{2x+3}+3} \right|\le 2\left| \dfrac{x-3}{3} \right|\le \dfrac{2}{3}\left| x-3 \right|$
Now for $\varepsilon >0$, choose $\delta =\dfrac{3}{2}\varepsilon $, we have
Whenever $\left| x-3 \right|<\delta =\dfrac{3}{2}\varepsilon \Rightarrow \dfrac{2}{3}\left| x-3 \right|<\varepsilon $
Bit since $\left| \sqrt{2x+3}-3 \right|\le \dfrac{2}{3}\left| x-3 \right|$, we have
$\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence whenever $\left| x-3 \right|<\delta $, we have $\left| \sqrt{2x+3}-3 \right|<\varepsilon $
Hence we have $\underset{x\to 3}{\mathop{\lim }}\,\sqrt{2x+3}=3$
Claim 2: $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Observe that $\left| x+3-6 \right|=\left| x-3 \right|$
So if we choose $\delta =\varepsilon $, we have $\forall \varepsilon >0,\exists \delta =\varepsilon >0$ such that $\left| x+6-3 \right|<\varepsilon $ whenever $\left| x-3 \right|<\delta $
Hence $\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)=6$
Hence $\underset{x\to 3}{\mathop{\lim }}\,f\left( x \right)=\dfrac{\underset{x\to 3}{\mathop{\lim }}\,g\left( x \right)}{\underset{x\to 3}{\mathop{\lim }}\,h\left( x \right)}=\dfrac{3}{6}=\dfrac{1}{2}$
Hence proved.
Note: Alternatively, we have
$\underset{x\to 3+}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( h+3 \right)+3}}{h+3+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2h+9}}{h+6}=\dfrac{\sqrt{2\left( 0 \right)+9}}{0+6}=\dfrac{3}{6}=\dfrac{1}{2}$ and $\underset{x\to {{3}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{2\left( 3-h \right)+3}}{3-h+3}=\underset{h\to 0}{\mathop{\lim }}\, \dfrac{\sqrt{9-2h}}{6-h}=\dfrac{\sqrt{9-0}}{6}=\dfrac{1}{2}$
Hence LHL = RHL $=\dfrac{1}{2}$
Hence the limit exists and is equal to $\dfrac{1}{2}$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

