Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Evaluate the following limit
limx32x+3x+3

Answer
VerifiedVerified
139.5k+ views
like imagedislike image
Hint: Find Left Hand Limit and Right Hand Limit. Use limxa+f(x)=limh0f(a+h) and limxaf(x)=limh0f(ah). Hence check whether Left Hand Limit equals Right Hand Limit or not.
Hence check whether the limit exists or not.

Complete step-by-step solution -

Limit of a function: Limit of a function f(x) is said to be equal to a if at point x=b, for all ε>0, there exists a δ>0 such that |f(x)a|<ε|f(x)-a|
Properties of the limit of a function:
[1] If limxaf(x) exists and limxag(x) exists, then so do the limits limxaf(x)+g(x),limxaf(x)g(x) and are equal to limxaf(x)+limxag(x) and (limxaf(x))(limxag(x)) respectively. If limxag(x)0, then limxaf(x)g(x) also exists and is equal to limxaf(x)limxag(x).
[2] If the limit of a function exists, then it is unique.
Here f(x)=2x+3x+3 and b = 3.
Claim: limx3f(x)=12
Proof:
Consider g(x)=2x+3 and h(x)=x+3
Claim 1: limx3g(x)=3
Observe that |2x+33|=|2x+392x+3+3|=|2x62x+3+3|=2|x32x+3+3|
Since x0, we have
|2x+33|=2|x32x+3+3|2|x33|23|x3|
Now for ε>0, choose δ=32ε, we have
Whenever |x3|<δ=32ε23|x3|<ε
Bit since |2x+33|23|x3|, we have
|2x+33|<ε
Hence whenever |x3|<δ, we have |2x+33|<ε
Hence we have limx32x+3=3
Claim 2: limx3h(x)=6
Observe that |x+36|=|x3|
So if we choose δ=ε, we have ε>0,δ=ε>0 such that |x+63|<ε whenever |x3|<δ
Hence limx3h(x)=6
Hence limx3f(x)=limx3g(x)limx3h(x)=36=12
Hence proved.

Note: Alternatively, we have
limx3+f(x)=limh02(h+3)+3h+3+3=limh02h+9h+6=2(0)+90+6=36=12 and limx3f(x)=limh02(3h)+33h+3=limh092h6h=906=12
Hence LHL = RHL =12
Hence the limit exists and is equal to 12.