
Evaluate: \[\mathop {\lim }\limits_{x \to 2} \dfrac{{{3^x} + {3^{3 - x}} - 12}}{{{3^{ - \dfrac{x}{2}}} - {3^{1 - x}}}}\]
Answer
232.8k+ views
Hint Simplify the given expression using algebraic identities and the law of exponents. Then substitute \[{3^{\dfrac{x}{2}}} = y\]. After that the given expression reduces to a function of \[y\]. \[x \to 2 \Rightarrow y \to 3\]. Put \[y = 3\] after canceling the term \[\left( {y - 3} \right)\].
Formula Used:
\[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\]
\[{a^{ - m}} = \dfrac{1}{{{a^m}}}\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step by step solution:
The given expression is \[\dfrac{{{3^x} + {3^{3 - x}} - 12}}{{{3^{ - \dfrac{x}{2}}} - {3^{1 - x}}}}\]
Use the identity \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\] and \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\]
Then the expression becomes
\[ = \dfrac{{{3^x} + \dfrac{{{3^3}}}{{{3^x}}} - 12}}{{\dfrac{1}{{{3^{\dfrac{x}{2}}}}} - \dfrac{{{3^1}}}{{{3^x}}}}}\]
\[ = \dfrac{{\left( {\dfrac{{{{\left( {{3^x}} \right)}^2} + 27 - 12 \cdot {3^x}}}{{{3^x}}}} \right)}}{{\left( {\dfrac{{{3^{\dfrac{x}{2}}} - 3}}{{{3^x}}}} \right)}}\]
\[ = \dfrac{{{3^{2x}} + 27 - 12 \cdot {3^x}}}{{{3^{\dfrac{x}{2}}} - 3}}\]
Let us substitute \[{3^{\dfrac{x}{2}}} = y\]
Then \[{3^{2x}} = {\left( {{3^{\dfrac{x}{2}}}} \right)^4} = {y^4}\] and \[{3^x} = {\left( {{3^{\dfrac{x}{2}}}} \right)^2} = {y^2}\]
Substitute these in the above expression.
\[ = \dfrac{{{y^4} + 27 - 12{y^2}}}{{y - 3}}\]
\[ = \dfrac{{{y^4} - 12{y^2} + 27}}{{y - 3}}\]
The numerator is a quadratic polynomial in \[{y^2}\].
Factorize the polynomial.
\[{y^4} - 12{y^2} + 27\]
\[ = {y^4} - 9{y^2} - 3{y^2} + 27\]
\[ = {y^2}\left( {{y^2} - 9} \right) - 3\left( {{y^2} - 9} \right)\]
\[ = \left( {{y^2} - 9} \right)\left( {{y^2} - 3} \right)\]
Use the identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[ = \left( {y + 3} \right)\left( {y - 3} \right)\left( {{y^2} - 3} \right)\]
So, the expression becomes
\[ = \dfrac{{\left( {y + 3} \right)\left( {y - 3} \right)\left( {{y^2} - 3} \right)}}{{\left( {y - 3} \right)}}\]
Given that \[x \to 2\]
At \[x = 2\], \[y = 3\]
So, \[x \to 2 \Rightarrow y \to 3\]
and \[y \to 3 \Rightarrow y \ne 3\]
So, \[y - 3 \ne 0\]
Cancel the term \[\left( {y - 3} \right)\] from numerator and denominator.
\[\therefore \]\[\mathop {\lim }\limits_{x \to 2} \dfrac{{{3^x} + {3^{3 - x}} - 12}}{{{3^{ - \dfrac{x}{2}}} - {3^{1 - x}}}} = \mathop {\lim }\limits_{y \to 3} \left( {y + 3} \right)\left( {{y^2} - 3} \right) = \left( {3 + 3} \right)\left( {{3^2} - 3} \right) = 6 \times 6 = 36\]
Hence, the required value is \[36\]
Note: Many students get confused seeing such a function. They should not be confused about it. Just simplify the expression using some laws, some identities. After simplification you’ll get a simple function. Then find out the required solution by taking the simple function.
Formula Used:
\[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\]
\[{a^{ - m}} = \dfrac{1}{{{a^m}}}\]
\[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Complete step by step solution:
The given expression is \[\dfrac{{{3^x} + {3^{3 - x}} - 12}}{{{3^{ - \dfrac{x}{2}}} - {3^{1 - x}}}}\]
Use the identity \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\] and \[{a^{ - m}} = \dfrac{1}{{{a^m}}}\]
Then the expression becomes
\[ = \dfrac{{{3^x} + \dfrac{{{3^3}}}{{{3^x}}} - 12}}{{\dfrac{1}{{{3^{\dfrac{x}{2}}}}} - \dfrac{{{3^1}}}{{{3^x}}}}}\]
\[ = \dfrac{{\left( {\dfrac{{{{\left( {{3^x}} \right)}^2} + 27 - 12 \cdot {3^x}}}{{{3^x}}}} \right)}}{{\left( {\dfrac{{{3^{\dfrac{x}{2}}} - 3}}{{{3^x}}}} \right)}}\]
\[ = \dfrac{{{3^{2x}} + 27 - 12 \cdot {3^x}}}{{{3^{\dfrac{x}{2}}} - 3}}\]
Let us substitute \[{3^{\dfrac{x}{2}}} = y\]
Then \[{3^{2x}} = {\left( {{3^{\dfrac{x}{2}}}} \right)^4} = {y^4}\] and \[{3^x} = {\left( {{3^{\dfrac{x}{2}}}} \right)^2} = {y^2}\]
Substitute these in the above expression.
\[ = \dfrac{{{y^4} + 27 - 12{y^2}}}{{y - 3}}\]
\[ = \dfrac{{{y^4} - 12{y^2} + 27}}{{y - 3}}\]
The numerator is a quadratic polynomial in \[{y^2}\].
Factorize the polynomial.
\[{y^4} - 12{y^2} + 27\]
\[ = {y^4} - 9{y^2} - 3{y^2} + 27\]
\[ = {y^2}\left( {{y^2} - 9} \right) - 3\left( {{y^2} - 9} \right)\]
\[ = \left( {{y^2} - 9} \right)\left( {{y^2} - 3} \right)\]
Use the identity \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
\[ = \left( {y + 3} \right)\left( {y - 3} \right)\left( {{y^2} - 3} \right)\]
So, the expression becomes
\[ = \dfrac{{\left( {y + 3} \right)\left( {y - 3} \right)\left( {{y^2} - 3} \right)}}{{\left( {y - 3} \right)}}\]
Given that \[x \to 2\]
At \[x = 2\], \[y = 3\]
So, \[x \to 2 \Rightarrow y \to 3\]
and \[y \to 3 \Rightarrow y \ne 3\]
So, \[y - 3 \ne 0\]
Cancel the term \[\left( {y - 3} \right)\] from numerator and denominator.
\[\therefore \]\[\mathop {\lim }\limits_{x \to 2} \dfrac{{{3^x} + {3^{3 - x}} - 12}}{{{3^{ - \dfrac{x}{2}}} - {3^{1 - x}}}} = \mathop {\lim }\limits_{y \to 3} \left( {y + 3} \right)\left( {{y^2} - 3} \right) = \left( {3 + 3} \right)\left( {{3^2} - 3} \right) = 6 \times 6 = 36\]
Hence, the required value is \[36\]
Note: Many students get confused seeing such a function. They should not be confused about it. Just simplify the expression using some laws, some identities. After simplification you’ll get a simple function. Then find out the required solution by taking the simple function.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

