
Evaluate:
$\int {\dfrac{{1 + \log x}}{{x\left( {2 + \log x} \right)\left( {3 + \log x} \right)}}} {\text{dx}}$
Answer
162.9k+ views
Hint- First use substitution method and then partial fraction method to simplify the integral.
Here we have to evaluate \[\int {\dfrac{{1 + \log x}}{{x\left( {2 + \log x} \right)\left( {3 + \log x} \right)}}} {\text{dx}}\]
So let’s substitute \[{\text{1 + logx = p}}\]
So on differentiating both the sides we have \[\left( {{\text{0 + }}\dfrac{1}{x}} \right)dx = dp\]
Let’s make this substitution back into our main integral we get
\[\int {\dfrac{p}{{x\left( {1 + p} \right)\left( {2 + p} \right)}} \times xdp} \] As \[{\text{(2 + logx)}}\]can be written as \[{\text{(1 + (1 + logx))}}\]and \[\left( {3 + \log x} \right)\]can be written as \[\left( {2 + (1 + \log x)} \right)\]
On simplifying we get
\[\int {\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}}} {\text{dp}}\]
Now let’s resolve it into partial fractions so we can write this form as
Let \[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{A}{{1 + p}} + \dfrac{B}{{2 + p}}\]……………………………. (1)
So let’s take LCM in the right side we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{A\left( {2 + p} \right) + B\left( {1 + p} \right)}}{{\left( {1 + p} \right)\left( {2 + p} \right)}}\]
Denominator in both sides will cancel it out so we get
\[{\text{p = }}A\left( {2 + p} \right) + B\left( {1 + p} \right)\]……………………………………. (2)
Now let’s put \[{\text{p = - 2}}\] so that we can find the value of B
We get
\[{\text{ - 2 = 0 - B}}\] Hence our \[{\text{B = 2}}\]………………………………………. (3)
Now we need to find A so let’s put \[{\text{p = - 1}}\] in equation (2) we get
\[{\text{ - 1 = A + 0}}\] Hence our \[{\text{A = - 1}}\]………………………………… (4)
Now let’s put equation (3) and equation (4) back into (1) we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}\]
So our integral can now be written as
\[{\text{I}} = \int {\left( {\dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}} \right){\text{ }}} {\text{dp}}\]
We can segregate this integral as
\[{\text{I = }}\int {\dfrac{{ - 1}}{{1 + p}}{\text{ dp}}} {\text{ + }}\int {\dfrac{2}{{2 + p}}} {\text{ dp}}\]
Now using the standard formula for integral of\[\int {\dfrac{{dx}}{x} = \log \left| x \right|} \], we can solve above as
\[{\text{I = - log}}\left| {1 + p} \right|{\text{ + 2log}}\left| {2 + p} \right|{\text{ + c}}\]
Let’s substitute back the value of p which was \[{\text{1 + logx}}\] we get
\[{\text{I = - log}}\left| {2 + \log x} \right| + 2\log \left| {3 + \log x} \right|{\text{ + c}}\]
Using the property of log that is \[{\text{log(A) - log(B) = log}}\left( {\dfrac{A}{B}} \right)\]and \[{\text{nlog(x) = log(x}}{{\text{)}}^n}\]
\[{\text{I = log}}\left| {\dfrac{{{{\left( {\log x + 3} \right)}^2}}}{{\log x + 2}}} \right|{\text{ + c}}\]
Note- All such type of problems are based upon the concept of evaluation by substitution, whenever we see some terms in the integral that are related or can be converted into one another in numerator or in denominator then we can use the basic term and substitute it to some quantity in order to simplify the integral.
Here we have to evaluate \[\int {\dfrac{{1 + \log x}}{{x\left( {2 + \log x} \right)\left( {3 + \log x} \right)}}} {\text{dx}}\]
So let’s substitute \[{\text{1 + logx = p}}\]
So on differentiating both the sides we have \[\left( {{\text{0 + }}\dfrac{1}{x}} \right)dx = dp\]
Let’s make this substitution back into our main integral we get
\[\int {\dfrac{p}{{x\left( {1 + p} \right)\left( {2 + p} \right)}} \times xdp} \] As \[{\text{(2 + logx)}}\]can be written as \[{\text{(1 + (1 + logx))}}\]and \[\left( {3 + \log x} \right)\]can be written as \[\left( {2 + (1 + \log x)} \right)\]
On simplifying we get
\[\int {\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}}} {\text{dp}}\]
Now let’s resolve it into partial fractions so we can write this form as
Let \[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{A}{{1 + p}} + \dfrac{B}{{2 + p}}\]……………………………. (1)
So let’s take LCM in the right side we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{A\left( {2 + p} \right) + B\left( {1 + p} \right)}}{{\left( {1 + p} \right)\left( {2 + p} \right)}}\]
Denominator in both sides will cancel it out so we get
\[{\text{p = }}A\left( {2 + p} \right) + B\left( {1 + p} \right)\]……………………………………. (2)
Now let’s put \[{\text{p = - 2}}\] so that we can find the value of B
We get
\[{\text{ - 2 = 0 - B}}\] Hence our \[{\text{B = 2}}\]………………………………………. (3)
Now we need to find A so let’s put \[{\text{p = - 1}}\] in equation (2) we get
\[{\text{ - 1 = A + 0}}\] Hence our \[{\text{A = - 1}}\]………………………………… (4)
Now let’s put equation (3) and equation (4) back into (1) we get
\[\dfrac{p}{{\left( {1 + p} \right)\left( {2 + p} \right)}} = \dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}\]
So our integral can now be written as
\[{\text{I}} = \int {\left( {\dfrac{{ - 1}}{{1 + p}} + \dfrac{2}{{2 + p}}} \right){\text{ }}} {\text{dp}}\]
We can segregate this integral as
\[{\text{I = }}\int {\dfrac{{ - 1}}{{1 + p}}{\text{ dp}}} {\text{ + }}\int {\dfrac{2}{{2 + p}}} {\text{ dp}}\]
Now using the standard formula for integral of\[\int {\dfrac{{dx}}{x} = \log \left| x \right|} \], we can solve above as
\[{\text{I = - log}}\left| {1 + p} \right|{\text{ + 2log}}\left| {2 + p} \right|{\text{ + c}}\]
Let’s substitute back the value of p which was \[{\text{1 + logx}}\] we get
\[{\text{I = - log}}\left| {2 + \log x} \right| + 2\log \left| {3 + \log x} \right|{\text{ + c}}\]
Using the property of log that is \[{\text{log(A) - log(B) = log}}\left( {\dfrac{A}{B}} \right)\]and \[{\text{nlog(x) = log(x}}{{\text{)}}^n}\]
\[{\text{I = log}}\left| {\dfrac{{{{\left( {\log x + 3} \right)}^2}}}{{\log x + 2}}} \right|{\text{ + c}}\]
Note- All such type of problems are based upon the concept of evaluation by substitution, whenever we see some terms in the integral that are related or can be converted into one another in numerator or in denominator then we can use the basic term and substitute it to some quantity in order to simplify the integral.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
