
Evaluate $\dfrac{d}{{dx}}\left( {\dfrac{{{e^{ax}}}}{{\sin \left( {b + c} \right)}}} \right)$.
A. $\dfrac{{{a^{ax}}\left[ {a\sin \left( {bx + c} \right) + b\cos \left( {bx + c} \right)} \right]}}{{{{\sin }^2}\left( {bx + c} \right)}}$
B. $\dfrac{{{a^{ax}}\left[ {a\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right]}}{{\sin \left( {bx + c} \right)}}$
C. $\dfrac{{{e^{ax}}\left[ {a\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right]}}{{{{\sin }^2}\left( {bx + c} \right)}}$
D. None of these
Answer
216.3k+ views
Hint: Given question is related to derivative. To find the derivative of $\dfrac{{{e^{ax}}}}{{\sin \left( {bx + c} \right)}}$, we will apply the quotient formula.
Formula Used:
Quotient formula: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$ Where $m$ is a constant.
Chain rule: $\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)$
$\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x$
$\dfrac{d}{{dx}}\left( {mx} \right) = m$ Where $m$ is a constant.
Complete step by step solution:
Given that, $\dfrac{d}{{dx}}\left( {\dfrac{{{e^{ax}}}}{{\sin \left( {b + c} \right)}}} \right)$
Apply the quotient formula $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$
$\begin{array}{l} = \dfrac{d}{{dx}}\left( {\dfrac{{{e^{ax}}}}{{\sin \left( {bx + c} \right)}}} \right)\\ = \dfrac{{\sin \left( {bx + c} \right)\dfrac{d}{{dx}}{e^{ax}} - {e^{ax}}\dfrac{d}{{dx}}\sin \left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}\end{array}$
$ = \dfrac{{\sin \left( {bx + c} \right)\dfrac{d}{{dx}}{e^{ax}} - {e^{ax}}\dfrac{d}{{dx}}\sin \left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Now applying $\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$and chain rule $\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - {e^{ax}}\cos \left( {bx + c} \right)\dfrac{d}{{dx}}\left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Now applying $\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - {e^{ax}}\cos \left( {bx + c} \right)\left[ {\dfrac{d}{{dx}}\left( {bx} \right) + \dfrac{d}{{dx}}c} \right]}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Now applying $\dfrac{d}{{dx}}\left( {mx} \right) = m$ and $\dfrac{d}{{dx}}m = 0$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - {e^{ax}}\cos \left( {bx + c} \right) \cdot b}}{{{{\sin }^2}\left( {bx + c} \right)}}$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - b{e^{ax}}\cos \left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}$
$ = \dfrac{{{e^{ax}}\left[ {a\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right]}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Option ‘C’ is correct
Note: This question can be solved by using quotient formula and chain rule. First apply the quotient formula on the given expression as it is in fractional form. To find $\dfrac{d}{{dx}}\sin \left( {bx + c} \right)$,we will apply the chain rule as b is multiplied with x.
Formula Used:
Quotient formula: $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$
$\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$ Where $m$ is a constant.
Chain rule: $\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)$
$\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x$
$\dfrac{d}{{dx}}\left( {mx} \right) = m$ Where $m$ is a constant.
Complete step by step solution:
Given that, $\dfrac{d}{{dx}}\left( {\dfrac{{{e^{ax}}}}{{\sin \left( {b + c} \right)}}} \right)$
Apply the quotient formula $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$
$\begin{array}{l} = \dfrac{d}{{dx}}\left( {\dfrac{{{e^{ax}}}}{{\sin \left( {bx + c} \right)}}} \right)\\ = \dfrac{{\sin \left( {bx + c} \right)\dfrac{d}{{dx}}{e^{ax}} - {e^{ax}}\dfrac{d}{{dx}}\sin \left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}\end{array}$
$ = \dfrac{{\sin \left( {bx + c} \right)\dfrac{d}{{dx}}{e^{ax}} - {e^{ax}}\dfrac{d}{{dx}}\sin \left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Now applying $\dfrac{d}{{dx}}{e^{mx}} = m{e^{mx}}$and chain rule $\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \cdot g'\left( x \right)$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - {e^{ax}}\cos \left( {bx + c} \right)\dfrac{d}{{dx}}\left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Now applying $\dfrac{d}{{dx}}\left( {f\left( x \right) \pm g\left( x \right)} \right) = \dfrac{d}{{dx}}f\left( x \right) \pm \dfrac{d}{{dx}}g\left( x \right)$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - {e^{ax}}\cos \left( {bx + c} \right)\left[ {\dfrac{d}{{dx}}\left( {bx} \right) + \dfrac{d}{{dx}}c} \right]}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Now applying $\dfrac{d}{{dx}}\left( {mx} \right) = m$ and $\dfrac{d}{{dx}}m = 0$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - {e^{ax}}\cos \left( {bx + c} \right) \cdot b}}{{{{\sin }^2}\left( {bx + c} \right)}}$
$ = \dfrac{{a{e^{ax}}\sin \left( {bx + c} \right) - b{e^{ax}}\cos \left( {bx + c} \right)}}{{{{\sin }^2}\left( {bx + c} \right)}}$
$ = \dfrac{{{e^{ax}}\left[ {a\sin \left( {bx + c} \right) - b\cos \left( {bx + c} \right)} \right]}}{{{{\sin }^2}\left( {bx + c} \right)}}$
Option ‘C’ is correct
Note: This question can be solved by using quotient formula and chain rule. First apply the quotient formula on the given expression as it is in fractional form. To find $\dfrac{d}{{dx}}\sin \left( {bx + c} \right)$,we will apply the chain rule as b is multiplied with x.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

