
What is the equation that represents Gauss theorem for gravitational field?
A. $\oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{G}$
B. $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
C. $\oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{{4\pi G}}$
D. $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{G}$
Answer
218.1k+ views
Hint: According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$
Where the electric field, $E$ is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$
Gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$
By comparing the equation for electric field and gravitational field we can arrive at the gauss law for gravitational field.
Complete step by step answer:
According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$ (1)
Where the electric field is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$ (2)
Similarly, we can write the gauss law for gravitational field.
We know gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$ (3)
Now compare equation (3) and (2)
We can see that $q$in electric field is analogous to$m$ in gravitational field.
Also, the constants $\dfrac{1}{{4\pi {\varepsilon _0}}}$ in electric field is analogous to the gravitational constant $G$in gravitational field. Now we can equate these constants.
$
\dfrac{1}{{4\pi {\varepsilon _0}}} = G \\
\dfrac{1}{{{\varepsilon _0}}} = 4\pi G \\
$
So, let us replace the gravitational analogues in the equation (1)
$
\oint {E.ds} = \dfrac{1}{{{\varepsilon _0}}} \times q \\
\oint {g.ds} = 4\pi G \times m \\
$
The gravitational force is always an attractive force. Hence, we have to consider a negative sign in the equation of gauss law for the gravitational field.
Thus, our final answer is option B, $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
Note: It is important to note that Gravitational force is always attractive in nature,but $4\pi mG$ is always a positive quantity and hence we include a negative sign in the left hand side of the equation to maintain the sign convention(negative field for attraction).
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$
Where the electric field, $E$ is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$
Gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$
By comparing the equation for electric field and gravitational field we can arrive at the gauss law for gravitational field.
Complete step by step answer:
According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$ (1)
Where the electric field is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$ (2)
Similarly, we can write the gauss law for gravitational field.
We know gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$ (3)
Now compare equation (3) and (2)
We can see that $q$in electric field is analogous to$m$ in gravitational field.
Also, the constants $\dfrac{1}{{4\pi {\varepsilon _0}}}$ in electric field is analogous to the gravitational constant $G$in gravitational field. Now we can equate these constants.
$
\dfrac{1}{{4\pi {\varepsilon _0}}} = G \\
\dfrac{1}{{{\varepsilon _0}}} = 4\pi G \\
$
So, let us replace the gravitational analogues in the equation (1)
$
\oint {E.ds} = \dfrac{1}{{{\varepsilon _0}}} \times q \\
\oint {g.ds} = 4\pi G \times m \\
$
The gravitational force is always an attractive force. Hence, we have to consider a negative sign in the equation of gauss law for the gravitational field.
Thus, our final answer is option B, $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
Note: It is important to note that Gravitational force is always attractive in nature,but $4\pi mG$ is always a positive quantity and hence we include a negative sign in the left hand side of the equation to maintain the sign convention(negative field for attraction).
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

