
What is the equation that represents Gauss theorem for gravitational field?
A. $\oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{G}$
B. $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
C. $\oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{{4\pi G}}$
D. $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = \dfrac{m}{G}$
Answer
219.3k+ views
Hint: According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$
Where the electric field, $E$ is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$
Gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$
By comparing the equation for electric field and gravitational field we can arrive at the gauss law for gravitational field.
Complete step by step answer:
According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$ (1)
Where the electric field is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$ (2)
Similarly, we can write the gauss law for gravitational field.
We know gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$ (3)
Now compare equation (3) and (2)
We can see that $q$in electric field is analogous to$m$ in gravitational field.
Also, the constants $\dfrac{1}{{4\pi {\varepsilon _0}}}$ in electric field is analogous to the gravitational constant $G$in gravitational field. Now we can equate these constants.
$
\dfrac{1}{{4\pi {\varepsilon _0}}} = G \\
\dfrac{1}{{{\varepsilon _0}}} = 4\pi G \\
$
So, let us replace the gravitational analogues in the equation (1)
$
\oint {E.ds} = \dfrac{1}{{{\varepsilon _0}}} \times q \\
\oint {g.ds} = 4\pi G \times m \\
$
The gravitational force is always an attractive force. Hence, we have to consider a negative sign in the equation of gauss law for the gravitational field.
Thus, our final answer is option B, $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
Note: It is important to note that Gravitational force is always attractive in nature,but $4\pi mG$ is always a positive quantity and hence we include a negative sign in the left hand side of the equation to maintain the sign convention(negative field for attraction).
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$
Where the electric field, $E$ is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$
Gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$
By comparing the equation for electric field and gravitational field we can arrive at the gauss law for gravitational field.
Complete step by step answer:
According to gauss law for electric fields, the net electric flux through any closed surface is equal to $\dfrac{1}{{{\varepsilon _0}}}$ times the total electric charge $q$ enclosed, by the surface.
That is $\oint {E.ds} = \dfrac{q}{{{\varepsilon _0}}}$ (1)
Where the electric field is given by the equation
$E = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{q}{{{r^2}}}$ (2)
Similarly, we can write the gauss law for gravitational field.
We know gravitational field is given by the equation
$g = G\dfrac{m}{{{r^2}}}$ (3)
Now compare equation (3) and (2)
We can see that $q$in electric field is analogous to$m$ in gravitational field.
Also, the constants $\dfrac{1}{{4\pi {\varepsilon _0}}}$ in electric field is analogous to the gravitational constant $G$in gravitational field. Now we can equate these constants.
$
\dfrac{1}{{4\pi {\varepsilon _0}}} = G \\
\dfrac{1}{{{\varepsilon _0}}} = 4\pi G \\
$
So, let us replace the gravitational analogues in the equation (1)
$
\oint {E.ds} = \dfrac{1}{{{\varepsilon _0}}} \times q \\
\oint {g.ds} = 4\pi G \times m \\
$
The gravitational force is always an attractive force. Hence, we have to consider a negative sign in the equation of gauss law for the gravitational field.
Thus, our final answer is option B, $ - \oint {\overrightarrow g \cdot \overrightarrow {ds} } = 4\pi mG$
Note: It is important to note that Gravitational force is always attractive in nature,but $4\pi mG$ is always a positive quantity and hence we include a negative sign in the left hand side of the equation to maintain the sign convention(negative field for attraction).
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

