
When the ends of metal wire are not connected to a battery:
A) Electrons move from positive electrode to negative electrode.
B) Electrons move from negative electrode to positive electrode.
C) Electrons move in random directions.
D) Protons move in a random direction in such a way that their net movement in a unit volume is zero.
Answer
131.4k+ views
Hint: Think whether current will flow in an isolated wire. And what changes occurs when the ends of metal wire is connected to the battery. Also keep in mind that whether electrons or protons are mobile or not.
Complete step by step solution:
This is a question of simple theory. When the wire is connected to a battery the electrons move in a specific direction due to the difference in the potential between the two terminals. They move from the negative terminal to the positive terminal. However there is no such potential difference developed when the metal wire is disconnected from the battery. Thus the electrons do not move in a specific direction. Being a metal wire and having free electrons, the electrons move in random directions in such a manner that their net movement is zero.
However protons are well bonded to the nucleus by strong nuclear forces. Hence they are immobile and do not contribute to flow of current. Thus only the free electrons can move.
Additional Information: Free electrons are those electrons which are loosely bonded to the nucleus. Hence they consist generally of the valence electrons. Being loosely bonded, they can easily move from one point to the other. Their movement is random. Presence of free electrons is a criterion for electrical conductivity.
Note: The movements of electrons are responsible for flowing current. The electrons only move in a specific direction when a potential difference is applied to it. There is no role of protons in current flowing. When the wire is connected across the two terminals of the battery the electrons flow from positive to negative through the wire which is outside the battery and move from negative to positive in the inside portion of the battery.
Complete step by step solution:
This is a question of simple theory. When the wire is connected to a battery the electrons move in a specific direction due to the difference in the potential between the two terminals. They move from the negative terminal to the positive terminal. However there is no such potential difference developed when the metal wire is disconnected from the battery. Thus the electrons do not move in a specific direction. Being a metal wire and having free electrons, the electrons move in random directions in such a manner that their net movement is zero.
However protons are well bonded to the nucleus by strong nuclear forces. Hence they are immobile and do not contribute to flow of current. Thus only the free electrons can move.
Additional Information: Free electrons are those electrons which are loosely bonded to the nucleus. Hence they consist generally of the valence electrons. Being loosely bonded, they can easily move from one point to the other. Their movement is random. Presence of free electrons is a criterion for electrical conductivity.
Note: The movements of electrons are responsible for flowing current. The electrons only move in a specific direction when a potential difference is applied to it. There is no role of protons in current flowing. When the wire is connected across the two terminals of the battery the electrons flow from positive to negative through the wire which is outside the battery and move from negative to positive in the inside portion of the battery.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Diffraction of Light - Young’s Single Slit Experiment

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
