Answer
Verified
85.8k+ views
Hint: Every orbital has a different shape and different lobes. The shape is decided by the azimuthal quantum number which is denoted as ‘l’. $d{{z}^{2}}$orbital is one of the 5 orbitals of d subshell which has a little different structure from ${{p}_{z}}$.
Complete step by step solution:
-There are 4 quantum numbers n, l, m and s. The principal quantum number (n) tells us about the shells of the atom. The azimuthal quantum number (l) tells us about the subshells of the atom. The magnetic quantum number (m) tells us about the orbitals of the atom and the spin quantum number (s) tells us about the orientation of the electrons in the orbital.
-Third quantum number is the magnetic quantum number and is denoted by m. It gives us the exact orbitals. Its total value can be given as ${{n}^{2}}$ or as (2l+1) since it lies in the range (-l to +l).
So, the d-subshell comes into picture when the value of n=3 and there are 5 orbitals for d-subshell since the value of l will be 2 for it. These orbitals are ${{d}_{xy}}, {{d}_{yz}}, {{d}_{xz}}, {{d}_{{{x}^{2}}-{{y}^{2}}, }}{{d}_{{{z}^{2}}}}$
-d-orbitals can be formed in 2 ways: between the axis and along the axis. $d{{z}^{2}}$ orbital is formed along the axis of the yz-plane and xz-plane. It has maximum electron density along the z-axis and is an axial orbital. The electron density of $d{{z}^{2}}$ orbital is negligible in the xy-plane and has the same phase in the opposite directions.
This is the shape of $d{{z}^{2}}$ orbital
So the correct option is A. A lobe along the z-axis and a ring along xy-plane.
Note: $d{{z}^{2}}$ orbital is similar to the ${{p}_{z}}$ orbital but is not the same. The probability of finding an electron is zero along the xy-plane for ${{p}_{z}}$orbital but this is not the case with the $d{{z}^{2}}$ orbital. Probability is not completely zero in it. Also, $d{{z}^{2}}$ orbital has the same phase in the opposite direction while ${{p}_{z}}$ orbital has a different phase in different directions.
Complete step by step solution:
-There are 4 quantum numbers n, l, m and s. The principal quantum number (n) tells us about the shells of the atom. The azimuthal quantum number (l) tells us about the subshells of the atom. The magnetic quantum number (m) tells us about the orbitals of the atom and the spin quantum number (s) tells us about the orientation of the electrons in the orbital.
-Third quantum number is the magnetic quantum number and is denoted by m. It gives us the exact orbitals. Its total value can be given as ${{n}^{2}}$ or as (2l+1) since it lies in the range (-l to +l).
So, the d-subshell comes into picture when the value of n=3 and there are 5 orbitals for d-subshell since the value of l will be 2 for it. These orbitals are ${{d}_{xy}}, {{d}_{yz}}, {{d}_{xz}}, {{d}_{{{x}^{2}}-{{y}^{2}}, }}{{d}_{{{z}^{2}}}}$
-d-orbitals can be formed in 2 ways: between the axis and along the axis. $d{{z}^{2}}$ orbital is formed along the axis of the yz-plane and xz-plane. It has maximum electron density along the z-axis and is an axial orbital. The electron density of $d{{z}^{2}}$ orbital is negligible in the xy-plane and has the same phase in the opposite directions.
This is the shape of $d{{z}^{2}}$ orbital
So the correct option is A. A lobe along the z-axis and a ring along xy-plane.
Note: $d{{z}^{2}}$ orbital is similar to the ${{p}_{z}}$ orbital but is not the same. The probability of finding an electron is zero along the xy-plane for ${{p}_{z}}$orbital but this is not the case with the $d{{z}^{2}}$ orbital. Probability is not completely zero in it. Also, $d{{z}^{2}}$ orbital has the same phase in the opposite direction while ${{p}_{z}}$ orbital has a different phase in different directions.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
The process requiring the absorption of energy is A class 11 chemistry JEE_Main
A scooterist sees a bus 1km ahead of him moving with class 11 physics JEE_Main
A cylinder of 10 Lcapacity at 300 Kcontaining the Hegas class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main