
What is the dimension of young’s modulus of elasticity?
(A) \[[M{L^{ - 1}}{T^{ - 2}}]\]
(B) \[[ML{T^{ - 2}}]\]
(C) \[[ML{T^{ - 1}}]\]
(D) None of these
Answer
216.3k+ views
Hint: Young’s modulus is defined as the ratio of stress to strain. Stress is forced by area and strain is a dimensionless quantity. Hence when substituted the Young’s modulus has the dimensions of stress.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Complete step-by-step solution
A body of mass M, on which F is applied will follow Hooke's law up to a certain point. The Hooke's law establishes a relation between stress applied on the body to the strain developed in it. It is given by:
\[Stress = YStrain\]
\[Y = \dfrac{{Stress}}{{Strain}}\]
Where stress in given by force developed inside an area of cross section A
Strain is given by the ratio of change in the length of the part to the actual length of the part. It is a dimensionless quantity.
So, the units of young’s modulus will be the same as that of stress developed.
\[Stress = \dfrac{{Force}}{{Area}}\]
\[Stress = \dfrac{{[{M^1}{L^0}{T^0}][{M^0}{L^1}{T^{ - 2}}]}}{{[{M^0}{L^2}{T^0}]}}\]
\[Stress = [M{L^{ - 1}}{T^{ - 2}}]\]
This dimension is the same for young modulus of elasticity.
Therefore, the correct answer is option A
Note One of the units of young’s modulus is Pa, this is because the expression for both stress and pressure is the same as force per unit area.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

Two identical balls are projected one vertically up class 11 physics JEE_MAIN

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Work Energy and Power Class 11 Physics Chapter 5 CBSE Notes - 2025-26

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

