
Differentiate with respect to $x:\sin \left( m{{\sin }^{-1}}x \right)$
(a) $\cos \left( m{{\cos }^{-1}}x \right)$
(b) $\sin \left( m{{\sin }^{-1}}x \right)$
(c) ${{m}^{2}}\sin x$
(d) none of these
Answer
218.1k+ views
Hint: To solve this question, we can use chain rule since we have to differentiate a composite function of the form \[f\left( g\left( x \right) \right)\].
In this question, we have to differentiate $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to
$x$. Before proceeding with the question, we must know the chain rule. If we have to differentiate a function which is the form of \[f\left( g\left( x \right) \right)\], we will use chain rule. We can differentiate a function which is the form of \[f\left( g\left( x \right) \right)\] using chain rule as shown below,
$\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{dx}=\dfrac{d\left( f\left( g\left( x \right) \right)
\right)}{d\left( g\left( x \right) \right)}\times \dfrac{d\left( g\left( x \right) \right)}{dx}.............\left( 1
\right)$
In the question, since we are given a function \[f\left( g\left( x \right) \right)=\sin \left( m{{\sin }^{-
1}}x \right)\]. So, we can find out $g\left( x \right)=m{{\sin }^{-1}}x$. Substituting \[f\left( g\left( x
\right) \right)=\sin \left( m{{\sin }^{-1}}x \right)\] and $g\left( x \right)=m{{\sin }^{-1}}x$ in equation
$\left( 1 \right)$, we get,
\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x
\right) \right)}{d\left( m{{\sin }^{-1}}x \right)}\times \dfrac{d\left( m{{\sin }^{-1}}x
\right)}{dx}.............\left( 2 \right)\]
Since we are differentiating $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to $m{{\sin }^{-1}}x$, we
get,
\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x \right)}=\cos \left(
m{{\sin }^{-1}}x \right)\], $\because \dfrac{d\sin x}{dx}=\cos x$
Also, we have a formula which gives us the derivative of ${{\sin }^{-1}}x$ with respect to $x$,
$\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}..........\left( 4 \right)$
Since $m$is a constant, we can take $m$out of the derivative in $\dfrac{d\left( m{{\sin }^{-1}}x
\right)}{dx}$ and hence, we can write $\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}$ as,
\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=m\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\]
Substituting $\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ from equation $\left( 4
\right)$ in the above equation to obtain the derivative of $m{{\sin }^{-1}}x$ with respect to $x$, we
get,
\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}...........\left( 5 \right)\]
Substituting \[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x
\right)}=\cos \left( m{{\sin }^{-1}}x \right)\] from equation $\left( 3 \right)$ and \[\dfrac{d\left(
m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}\] from equation $\left( 5 \right)$ in
equation $\left( 2 \right)$, we get,
\[\begin{align}
& \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\cos \left( m{{\sin }^{-1}}x
\right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}} \\
& \Rightarrow \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{m\cos \left( m{{\sin
}^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}} \\
\end{align}\]
None of the options are matching with the answer that is \[\dfrac{m\cos \left( m{{\sin }^{-1}}x
\right)}{\sqrt{1-{{x}^{2}}}}\].
Therefore the correct answer is option (d).
Note: There is a possibility of committing a mistake while writing the derivative of $\sin x$ or $\cos x$. There is always a confusion in writing the negative sign. One may write the derivative of $\sin x$ as $-\cos x$ instead of $\cos x$. Also, one may write the derivative of $\cos x$ as $\sin x$ instead of $-
\sin x$. So, in order to avoid such mistakes, one must remember them thoroughly.
In this question, we have to differentiate $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to
$x$. Before proceeding with the question, we must know the chain rule. If we have to differentiate a function which is the form of \[f\left( g\left( x \right) \right)\], we will use chain rule. We can differentiate a function which is the form of \[f\left( g\left( x \right) \right)\] using chain rule as shown below,
$\dfrac{d\left( f\left( g\left( x \right) \right) \right)}{dx}=\dfrac{d\left( f\left( g\left( x \right) \right)
\right)}{d\left( g\left( x \right) \right)}\times \dfrac{d\left( g\left( x \right) \right)}{dx}.............\left( 1
\right)$
In the question, since we are given a function \[f\left( g\left( x \right) \right)=\sin \left( m{{\sin }^{-
1}}x \right)\]. So, we can find out $g\left( x \right)=m{{\sin }^{-1}}x$. Substituting \[f\left( g\left( x
\right) \right)=\sin \left( m{{\sin }^{-1}}x \right)\] and $g\left( x \right)=m{{\sin }^{-1}}x$ in equation
$\left( 1 \right)$, we get,
\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x
\right) \right)}{d\left( m{{\sin }^{-1}}x \right)}\times \dfrac{d\left( m{{\sin }^{-1}}x
\right)}{dx}.............\left( 2 \right)\]
Since we are differentiating $\sin \left( m{{\sin }^{-1}}x \right)$ with respect to $m{{\sin }^{-1}}x$, we
get,
\[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x \right)}=\cos \left(
m{{\sin }^{-1}}x \right)\], $\because \dfrac{d\sin x}{dx}=\cos x$
Also, we have a formula which gives us the derivative of ${{\sin }^{-1}}x$ with respect to $x$,
$\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}..........\left( 4 \right)$
Since $m$is a constant, we can take $m$out of the derivative in $\dfrac{d\left( m{{\sin }^{-1}}x
\right)}{dx}$ and hence, we can write $\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}$ as,
\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=m\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}\]
Substituting $\dfrac{d{{\sin }^{-1}}x}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$ from equation $\left( 4
\right)$ in the above equation to obtain the derivative of $m{{\sin }^{-1}}x$ with respect to $x$, we
get,
\[\dfrac{d\left( m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}...........\left( 5 \right)\]
Substituting \[\dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{d\left( m{{\sin }^{-1}}x
\right)}=\cos \left( m{{\sin }^{-1}}x \right)\] from equation $\left( 3 \right)$ and \[\dfrac{d\left(
m{{\sin }^{-1}}x \right)}{dx}=\dfrac{m}{\sqrt{1-{{x}^{2}}}}\] from equation $\left( 5 \right)$ in
equation $\left( 2 \right)$, we get,
\[\begin{align}
& \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\cos \left( m{{\sin }^{-1}}x
\right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}} \\
& \Rightarrow \dfrac{d\left( \sin \left( m{{\sin }^{-1}}x \right) \right)}{dx}=\dfrac{m\cos \left( m{{\sin
}^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}} \\
\end{align}\]
None of the options are matching with the answer that is \[\dfrac{m\cos \left( m{{\sin }^{-1}}x
\right)}{\sqrt{1-{{x}^{2}}}}\].
Therefore the correct answer is option (d).
Note: There is a possibility of committing a mistake while writing the derivative of $\sin x$ or $\cos x$. There is always a confusion in writing the negative sign. One may write the derivative of $\sin x$ as $-\cos x$ instead of $\cos x$. Also, one may write the derivative of $\cos x$ as $\sin x$ instead of $-
\sin x$. So, in order to avoid such mistakes, one must remember them thoroughly.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

