
When \[\dfrac{1}{a} + \dfrac{1}{c} + \dfrac{1}{{(a - b)}} + \dfrac{1}{{(c - b)}} = 0\] and \[b \ne a + c\], then \[a\], b, \[c\] are in
A. AP
B. GP
C. HP
D. None of these
Answer
217.8k+ views
Hint:Here we basically rearrange the equation
\[\dfrac{1}{a} + \dfrac{1}{c} + \dfrac{1}{{(a - b)}} + \dfrac{1}{{(c - b)}} = 0\]
In such a way we can substitute \[b \ne a + c\] in it and further simplify the equation to obtain the required answer.
The sequence of real numbers that are reciprocals of an arithmetic progression that does not contain 0 is known as Harmonic progression.
Formula used:
If \[a,b,c\] are in harmonic progression, then \[\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}\].
Complete step by step Solution:
Here the given equations are
\[\dfrac{1}{a} + \dfrac{1}{c} + \dfrac{1}{{(a - b)}} + \dfrac{1}{{(c - b)}} = 0\]
\[b \ne a + c\]
Next, we rearrange the terms of the equation \[\dfrac{1}{a} + \dfrac{1}{c} + \dfrac{1}{{(a - b)}} + \dfrac{1}{{(c - b)}} = 0\] in the following way,
\[\left[\left(\dfrac{1}{a}\right) + \dfrac{1}{{(c - b)}}\right] +\left [\left(\dfrac{1}{c}\right) + \dfrac{1}{{(a - b)}}\right] = 0\]
Adding the fractional values with the brackets we get
\[\left[\dfrac{{(c - b + a)}}{{a(c - b)}}\right] +\left [\dfrac{{(a - b + c)}}{{c(a - b)}}\right] = 0\]
Next, we take \[(a + c - b)\] as common,
\[(a + c - b)\left(\dfrac{1}{{a(c - b)}} + \dfrac{1}{{c(a - b)}}\right) = 0\]
Further, as we are given \[b \ne a + c\], we rearrange the terms to get
\[(a + c - b) \ne 0\]
Since one factor of given equation is \[(a + c - b) \ne 0\], so the another factor of the equation must be equal to zero.
So \[\dfrac{1}{{a(c - b)}} + \dfrac{1}{{c(a - b)}} = 0\]
Solving fractions within the brackets, we get
\[\dfrac{{[c(a - b) + a(c - b)]}}{{ac(a - b)(c-b)}} = 0\]
Sending denominator to the other side of the equals to sign we get
\[[c(a - b) + a(c - b)] = 0\]
Simplifying further we get
\[ca - cb + ac - ab = 0\]
\[2ac = bc + ab\]
Now we divide the equation by \[abc\] on both sides
\[\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}\]
Which is necessary condition to prove that a, b and c are in HP
Hence proved \[a,b,c\] are HP.
Hence, option C is the correct answer.
Note: Student often confused with geometric progression and harmonic progression. But harmonic progression is reciprocal of terms in arithmetic progression whereas geometric progression has different relation between terms.
\[\dfrac{1}{a} + \dfrac{1}{c} + \dfrac{1}{{(a - b)}} + \dfrac{1}{{(c - b)}} = 0\]
In such a way we can substitute \[b \ne a + c\] in it and further simplify the equation to obtain the required answer.
The sequence of real numbers that are reciprocals of an arithmetic progression that does not contain 0 is known as Harmonic progression.
Formula used:
If \[a,b,c\] are in harmonic progression, then \[\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}\].
Complete step by step Solution:
Here the given equations are
\[\dfrac{1}{a} + \dfrac{1}{c} + \dfrac{1}{{(a - b)}} + \dfrac{1}{{(c - b)}} = 0\]
\[b \ne a + c\]
Next, we rearrange the terms of the equation \[\dfrac{1}{a} + \dfrac{1}{c} + \dfrac{1}{{(a - b)}} + \dfrac{1}{{(c - b)}} = 0\] in the following way,
\[\left[\left(\dfrac{1}{a}\right) + \dfrac{1}{{(c - b)}}\right] +\left [\left(\dfrac{1}{c}\right) + \dfrac{1}{{(a - b)}}\right] = 0\]
Adding the fractional values with the brackets we get
\[\left[\dfrac{{(c - b + a)}}{{a(c - b)}}\right] +\left [\dfrac{{(a - b + c)}}{{c(a - b)}}\right] = 0\]
Next, we take \[(a + c - b)\] as common,
\[(a + c - b)\left(\dfrac{1}{{a(c - b)}} + \dfrac{1}{{c(a - b)}}\right) = 0\]
Further, as we are given \[b \ne a + c\], we rearrange the terms to get
\[(a + c - b) \ne 0\]
Since one factor of given equation is \[(a + c - b) \ne 0\], so the another factor of the equation must be equal to zero.
So \[\dfrac{1}{{a(c - b)}} + \dfrac{1}{{c(a - b)}} = 0\]
Solving fractions within the brackets, we get
\[\dfrac{{[c(a - b) + a(c - b)]}}{{ac(a - b)(c-b)}} = 0\]
Sending denominator to the other side of the equals to sign we get
\[[c(a - b) + a(c - b)] = 0\]
Simplifying further we get
\[ca - cb + ac - ab = 0\]
\[2ac = bc + ab\]
Now we divide the equation by \[abc\] on both sides
\[\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}\]
Which is necessary condition to prove that a, b and c are in HP
Hence proved \[a,b,c\] are HP.
Hence, option C is the correct answer.
Note: Student often confused with geometric progression and harmonic progression. But harmonic progression is reciprocal of terms in arithmetic progression whereas geometric progression has different relation between terms.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

