
Define 1 Ohm resistance. A student has a resistance wire of 1 Ohm. If the length of this wire is 50cm, to what length he should stretch it uniformly so as to obtain a wire of 4 Ohms resistance? Justify your answer.
Answer
139.8k+ views
Hint: From ohm’s law, the definition of 1 ohm resistance can be defined. The resistance of a substance is directly proportional to its length.
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Complete Step-by-Step Solution:
From the ohm law equation, the definition of 1 ohm, could be derived.
The ohm’s law equation is can be written as
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
Hence, for 1 ohms, we can write
\[1\Omega = \dfrac{{1{\text{V}}}}{{1{\text{A}}}}\]
Hence, 1 ohm’s could be defined as the resistance to a 1 A current which causes 1 volt potential difference or voltage drop. Or it can be defined as the resistance value which would allow only 1 A of current to flow when the component is connected to a 1 volt source.
For the second part of the question, a student possesses a resistance wire of 1 ohms which has a length 50 cm. to what length should he stretch it uniformly to obtain a resistance wire of 4 ohms.
Recall that the resistance of a wire can be given as
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Hence, if the all other properties are kept constant,
\[\dfrac{R}{l} = k\] where \[k\] is a constant.
Then,
\[\dfrac{{{R_1}}}{{{l_1}}} = \dfrac{{{R_2}}}{{{l_2}}}\]
\[ \Rightarrow \dfrac{1}{{50}} = \dfrac{4}{{{l_2}}}\]
Hence, by cross multiplication,
\[{l_2} = 50 \times 4 = 250cm\]
Hence, the length of the wire has to be stretched to 250 cm.
Note: In actuality, the wire would not need to stretch that far before the resistance actually attains 4 ohms as desired. This is due to the Poisson phenomenon, which is the fact that as the length stretches, the cross sectional area of the wire will reduce, hence creating a double effect of increment of resistivity (the smaller the cross sectional area, the lower the resistance).
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Complete Step-by-Step Solution:
From the ohm law equation, the definition of 1 ohm, could be derived.
The ohm’s law equation is can be written as
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
Hence, for 1 ohms, we can write
\[1\Omega = \dfrac{{1{\text{V}}}}{{1{\text{A}}}}\]
Hence, 1 ohm’s could be defined as the resistance to a 1 A current which causes 1 volt potential difference or voltage drop. Or it can be defined as the resistance value which would allow only 1 A of current to flow when the component is connected to a 1 volt source.
For the second part of the question, a student possesses a resistance wire of 1 ohms which has a length 50 cm. to what length should he stretch it uniformly to obtain a resistance wire of 4 ohms.
Recall that the resistance of a wire can be given as
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Hence, if the all other properties are kept constant,
\[\dfrac{R}{l} = k\] where \[k\] is a constant.
Then,
\[\dfrac{{{R_1}}}{{{l_1}}} = \dfrac{{{R_2}}}{{{l_2}}}\]
\[ \Rightarrow \dfrac{1}{{50}} = \dfrac{4}{{{l_2}}}\]
Hence, by cross multiplication,
\[{l_2} = 50 \times 4 = 250cm\]
Hence, the length of the wire has to be stretched to 250 cm.
Note: In actuality, the wire would not need to stretch that far before the resistance actually attains 4 ohms as desired. This is due to the Poisson phenomenon, which is the fact that as the length stretches, the cross sectional area of the wire will reduce, hence creating a double effect of increment of resistivity (the smaller the cross sectional area, the lower the resistance).
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
