
Define 1 Ohm resistance. A student has a resistance wire of 1 Ohm. If the length of this wire is 50cm, to what length he should stretch it uniformly so as to obtain a wire of 4 Ohms resistance? Justify your answer.
Answer
232.8k+ views
Hint: From ohm’s law, the definition of 1 ohm resistance can be defined. The resistance of a substance is directly proportional to its length.
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Complete Step-by-Step Solution:
From the ohm law equation, the definition of 1 ohm, could be derived.
The ohm’s law equation is can be written as
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
Hence, for 1 ohms, we can write
\[1\Omega = \dfrac{{1{\text{V}}}}{{1{\text{A}}}}\]
Hence, 1 ohm’s could be defined as the resistance to a 1 A current which causes 1 volt potential difference or voltage drop. Or it can be defined as the resistance value which would allow only 1 A of current to flow when the component is connected to a 1 volt source.
For the second part of the question, a student possesses a resistance wire of 1 ohms which has a length 50 cm. to what length should he stretch it uniformly to obtain a resistance wire of 4 ohms.
Recall that the resistance of a wire can be given as
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Hence, if the all other properties are kept constant,
\[\dfrac{R}{l} = k\] where \[k\] is a constant.
Then,
\[\dfrac{{{R_1}}}{{{l_1}}} = \dfrac{{{R_2}}}{{{l_2}}}\]
\[ \Rightarrow \dfrac{1}{{50}} = \dfrac{4}{{{l_2}}}\]
Hence, by cross multiplication,
\[{l_2} = 50 \times 4 = 250cm\]
Hence, the length of the wire has to be stretched to 250 cm.
Note: In actuality, the wire would not need to stretch that far before the resistance actually attains 4 ohms as desired. This is due to the Poisson phenomenon, which is the fact that as the length stretches, the cross sectional area of the wire will reduce, hence creating a double effect of increment of resistivity (the smaller the cross sectional area, the lower the resistance).
Formula used: In this solution we will be using the following formulae;
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Complete Step-by-Step Solution:
From the ohm law equation, the definition of 1 ohm, could be derived.
The ohm’s law equation is can be written as
\[R = \dfrac{V}{I}\] where \[R\] is resistance, \[V\] is voltage and \[I\] is current.
Hence, for 1 ohms, we can write
\[1\Omega = \dfrac{{1{\text{V}}}}{{1{\text{A}}}}\]
Hence, 1 ohm’s could be defined as the resistance to a 1 A current which causes 1 volt potential difference or voltage drop. Or it can be defined as the resistance value which would allow only 1 A of current to flow when the component is connected to a 1 volt source.
For the second part of the question, a student possesses a resistance wire of 1 ohms which has a length 50 cm. to what length should he stretch it uniformly to obtain a resistance wire of 4 ohms.
Recall that the resistance of a wire can be given as
\[R = \rho \dfrac{l}{A}\] where \[\rho \] is the resistivity of the wire, \[l\] is the length and \[A\] is the cross sectional area.
Hence, if the all other properties are kept constant,
\[\dfrac{R}{l} = k\] where \[k\] is a constant.
Then,
\[\dfrac{{{R_1}}}{{{l_1}}} = \dfrac{{{R_2}}}{{{l_2}}}\]
\[ \Rightarrow \dfrac{1}{{50}} = \dfrac{4}{{{l_2}}}\]
Hence, by cross multiplication,
\[{l_2} = 50 \times 4 = 250cm\]
Hence, the length of the wire has to be stretched to 250 cm.
Note: In actuality, the wire would not need to stretch that far before the resistance actually attains 4 ohms as desired. This is due to the Poisson phenomenon, which is the fact that as the length stretches, the cross sectional area of the wire will reduce, hence creating a double effect of increment of resistivity (the smaller the cross sectional area, the lower the resistance).
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

