
Consider the situation shown in the figure. A spring of spring constant \[400{\text{ }}Nm\]is attached at one end to a wedge fixed rigidly with the horizontal part. A \[40g\] mass is released from rest while situated at a height 5cm the curved track. The maximum deformation in the spring is nearly equal to (take \[g = 10m/{s^2}\]

(A) $9.8m$
(B) \[9.8cm\]
(C) $0.98m$
(D) $0.009km $
Answer
219k+ views
Hint In this situation energy from one form is converted into another form hence we can use the conservation of energy theorem with the given values to calculate the spring deformation
Formula Used:
\[{K_i} + {P_i} = {K_f} + {P_f}\]
Complete step by step answer
Since the block is released then initial velocity,$u = 0$and it will follow the curved path and compress the spring till the final velocity of block will be zero after that the spring will regain its position and the block will be thrown back.
Since it is a friction less path, no external force exists. Only conservative forces are present hence you can say that the mechanical energy is conserved between the point of drop till the point of maximum compression of spring.
\[{K_i} + {P_i} = {K_f} + {P_f}\] , where $K_i$ and $K_f$ are the initial and final kinetic energy ---(1)
And $P_i$ and $P_f$ are the initial and final potential energy
We know that potential energy at a height ‘h’ of mass ‘m’ is given by \[mgh\]where g is the acceleration due to gravity and the potential energy stored in the spring is $\dfrac{1}{2}k{x^2}$ where k is the spring constant and x is the displacement.
\[{K_i} = 0\]and\[{K_f} = 0\]as the initial and final velocities are zero
As you can see that the final potential of block is also zero since its final velocity is zero, but the elastic potential energy will be acting thus
Substituting these in equation (1),
\[0 + mgh = 0 + \dfrac{1}{2}k{x^2} \Rightarrow x = \sqrt {\dfrac{{2mgh}}{k}} = \sqrt {\dfrac{{2 \times 0.04 \times 10 \times 5}}{{400}}} = \dfrac{1}{{10}}m = 10cm \cong 9.8cm\]
Hence, the correct option is B.
Note
If a string is compressed or stretched then we see that work is done due to spring elasticity, this work done is stored in the spring in the form of elastic potential energy.
Formula Used:
\[{K_i} + {P_i} = {K_f} + {P_f}\]
Complete step by step answer
Since the block is released then initial velocity,$u = 0$and it will follow the curved path and compress the spring till the final velocity of block will be zero after that the spring will regain its position and the block will be thrown back.
Since it is a friction less path, no external force exists. Only conservative forces are present hence you can say that the mechanical energy is conserved between the point of drop till the point of maximum compression of spring.
\[{K_i} + {P_i} = {K_f} + {P_f}\] , where $K_i$ and $K_f$ are the initial and final kinetic energy ---(1)
And $P_i$ and $P_f$ are the initial and final potential energy
We know that potential energy at a height ‘h’ of mass ‘m’ is given by \[mgh\]where g is the acceleration due to gravity and the potential energy stored in the spring is $\dfrac{1}{2}k{x^2}$ where k is the spring constant and x is the displacement.
\[{K_i} = 0\]and\[{K_f} = 0\]as the initial and final velocities are zero
As you can see that the final potential of block is also zero since its final velocity is zero, but the elastic potential energy will be acting thus
Substituting these in equation (1),
\[0 + mgh = 0 + \dfrac{1}{2}k{x^2} \Rightarrow x = \sqrt {\dfrac{{2mgh}}{k}} = \sqrt {\dfrac{{2 \times 0.04 \times 10 \times 5}}{{400}}} = \dfrac{1}{{10}}m = 10cm \cong 9.8cm\]
Hence, the correct option is B.
Note
If a string is compressed or stretched then we see that work is done due to spring elasticity, this work done is stored in the spring in the form of elastic potential energy.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

