
Citric acid \[\left( {{H_3}A} \right)\] is a polyprotic acid with \[{K_1},{K_2}\] and ${K_3}$ equals to $7.4 \times {10^{ - 4}},1.7 \times {10^{ - 5}}$ and $4.0 \times {10^{ - 7}}$ ,respectively. Calculate the $[{H^ \oplus }],\left[ {{H_2}{A^ - }} \right],\left[ {H{A^{2 - }}} \right]$ and $\left[ {{A^{3 - }}} \right]$ in $0.01M$ citric acid.
A. $\left[ {{H^ \oplus }} \right] = \left[ {{H_2}{A^ - }} \right] = 2.4 \times {10^{ - 3}}M,\left[ {H{A^{2 - }}} \right] = 1.7 \times {10^{ - 5}},\left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 9}}$
B. $\left[ {{H^ \oplus }} \right] = \left[ {{H_2}{A^ - }} \right] = 2.4 \times {10^{ - 6}}M,\left[ {H{A^{2 - }}} \right] = 1.75 \times {10^{ - 5}},\left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 6}}$
C. $\left[ {{H^ \oplus }} \right] = \left[ {{H_2}{A^ - }} \right] = 2.4 \times {10^{ - 5}}M,\left[ {H{A^{2 - }}} \right] = 1.75 \times {10^{ - 5}},\left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 8}}$
D. $\left[ {{H^ \oplus }} \right] = \left[ {{H_2}{A^ - }} \right] = 2.4 \times {10^{ - 7}}M,\left[ {H{A^{2 - }}} \right] = 1.75 \times {10^{ - 5}},\left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 6}}$
Answer
232.8k+ views
Hint: We know that Citric acid \[\left( {{H_3}A} \right)\] is a polyprotic acid, polyprotic acids contain multiple acidic protons and dissociates in different steps. In polyprotic acid the first dissociation constant is always the largest followed by second. This is because the protons become successively less acidic as they are lost.
Complete step by step answer:
> To solve this problem first of all Let's write the dissociation equation of citric acid which is as follows;
${H_3}A + {H_2}O \rightleftharpoons {H_2}{A^ - } + {H_3}{O^ \oplus }$ (First dissociation reaction)
So the value of first dissociation constant will be the ratio of the concentrations of product and reactant; ${K_1} = \dfrac{{\left[ {{H_2}{A^ - }} \right]\left[ {{H_3}{O^ \oplus }} \right]}}{{[{H_3}A]}} = 7.4 \times {10^{ - 4}}$
> Let suppose the amount of $\left[ {{H_2}{A^ - }} \right],\left[ {{H_3}{O^ \oplus }} \right]$formed is $xM$ of each after dissociation of citric acid then, ${K_1} = \dfrac{{{x^2}}}{{0.01 - x}} = 7.4 \times {10^{ - 4}}$
$\begin{gathered}
\Rightarrow {x^2} + \left( {7.4 \times {{10}^{ - 4}}} \right)x - \left( {7.4 \times {{10}^{ - 6}}} \right) = 0 \\
\Rightarrow x = 2.4 \times {10^{ - 3}}M \\
\end{gathered} $
> Hence the concentration of $\left[ {{H_3}{O^ \oplus }} \right]$ and $\left[ {{H_2}{A^ - }} \right]$ is $2.4 \times {10^{ - 3}}M$.
> Now ${H_2}{A^ - }$ will further dissociate in $H{A^{2 - }}$ and ${H_3}{O^ \oplus }$. The dissociation equation of ${H_2}{A^ - }$ is as follows; ${H_2}{A^ - } + {H_2}O \rightleftharpoons H{A^{2 - }} + {H_3}{O^ \oplus }$ (Second dissociation reaction)
So the second dissociation constant will be;
${K_2} = \dfrac{{\left[ {H{A^{2 - }}} \right]\left[ {{H_3}{O^ \oplus }} \right]}}{{\left[ {{H_2}{A^ - }} \right]}}$ ; let the concentration of $H{A^{2 - }}$ and ${H_3}{O^ \oplus }$ formed be $yM$.
$\begin{gathered}
\Rightarrow 1.7 \times {10^{ - 5}} = \dfrac{{\left[ {H{A^{2 - }}} \right]\left[ y \right]}}{y} \\
\Rightarrow \left[ {H{A^{2 - }}} \right] = 1.7 \times {10^{ - 5}}M \\
\end{gathered} $
$H{A^{2 - }}$ will further dissociate in ${A^{3 - }}$ and ${H_3}{O^ \oplus }$. The dissociation equation of $H{A^{2 - }}$ is given below;
$H{A^{2 - }} + {H_2}O \rightleftharpoons {A^{3 - }} + {H_3}{O^ \oplus }$; (Third dissociation reaction)
> Hence the value of the third dissociation constant will be ; ${K_3} = \dfrac{{\left[ {{A^{3 - }}} \right]\left[ {{H_3}{O^ \oplus }} \right]}}{{\left[ {H{A^{2 - }}} \right]}}$
> Here we can directly put the concentration of ${A^{3 - }}$ and ${H_3}{O^ \oplus }$ in the equation of the third dissociation constant as we have calculated it above.
Now; $\begin{gathered}
\Rightarrow 4.0 \times {10^{ - 7}} = \dfrac{{\left[ {{A^{3 - }}} \right]\left( {2.4 \times {{10}^{ - 3}}} \right)}}{{1.7 \times {{10}^{ - 5}}}} \\
\Rightarrow \left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 9}}M \\
\end{gathered} $
Hence we have calculated$\left[ {{H^ \oplus }} \right] = \left[ {{H_2}{A^ - }} \right] = 2.4 \times {10^{ - 3}}M,\left[ {H{A^{2 - }}} \right] = 1.7 \times {10^{ - 5}},\left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 9}}$
So, the correct answer is “Option A”.
Note:
1- We know that in the problem statement the value of first, second and third dissociation constant of citric aid is given.
2- So with the help of dissociation constant and dissociation equation we have calculated the value of concentration of the product.
Complete step by step answer:
> To solve this problem first of all Let's write the dissociation equation of citric acid which is as follows;
${H_3}A + {H_2}O \rightleftharpoons {H_2}{A^ - } + {H_3}{O^ \oplus }$ (First dissociation reaction)
So the value of first dissociation constant will be the ratio of the concentrations of product and reactant; ${K_1} = \dfrac{{\left[ {{H_2}{A^ - }} \right]\left[ {{H_3}{O^ \oplus }} \right]}}{{[{H_3}A]}} = 7.4 \times {10^{ - 4}}$
> Let suppose the amount of $\left[ {{H_2}{A^ - }} \right],\left[ {{H_3}{O^ \oplus }} \right]$formed is $xM$ of each after dissociation of citric acid then, ${K_1} = \dfrac{{{x^2}}}{{0.01 - x}} = 7.4 \times {10^{ - 4}}$
$\begin{gathered}
\Rightarrow {x^2} + \left( {7.4 \times {{10}^{ - 4}}} \right)x - \left( {7.4 \times {{10}^{ - 6}}} \right) = 0 \\
\Rightarrow x = 2.4 \times {10^{ - 3}}M \\
\end{gathered} $
> Hence the concentration of $\left[ {{H_3}{O^ \oplus }} \right]$ and $\left[ {{H_2}{A^ - }} \right]$ is $2.4 \times {10^{ - 3}}M$.
> Now ${H_2}{A^ - }$ will further dissociate in $H{A^{2 - }}$ and ${H_3}{O^ \oplus }$. The dissociation equation of ${H_2}{A^ - }$ is as follows; ${H_2}{A^ - } + {H_2}O \rightleftharpoons H{A^{2 - }} + {H_3}{O^ \oplus }$ (Second dissociation reaction)
So the second dissociation constant will be;
${K_2} = \dfrac{{\left[ {H{A^{2 - }}} \right]\left[ {{H_3}{O^ \oplus }} \right]}}{{\left[ {{H_2}{A^ - }} \right]}}$ ; let the concentration of $H{A^{2 - }}$ and ${H_3}{O^ \oplus }$ formed be $yM$.
$\begin{gathered}
\Rightarrow 1.7 \times {10^{ - 5}} = \dfrac{{\left[ {H{A^{2 - }}} \right]\left[ y \right]}}{y} \\
\Rightarrow \left[ {H{A^{2 - }}} \right] = 1.7 \times {10^{ - 5}}M \\
\end{gathered} $
$H{A^{2 - }}$ will further dissociate in ${A^{3 - }}$ and ${H_3}{O^ \oplus }$. The dissociation equation of $H{A^{2 - }}$ is given below;
$H{A^{2 - }} + {H_2}O \rightleftharpoons {A^{3 - }} + {H_3}{O^ \oplus }$; (Third dissociation reaction)
> Hence the value of the third dissociation constant will be ; ${K_3} = \dfrac{{\left[ {{A^{3 - }}} \right]\left[ {{H_3}{O^ \oplus }} \right]}}{{\left[ {H{A^{2 - }}} \right]}}$
> Here we can directly put the concentration of ${A^{3 - }}$ and ${H_3}{O^ \oplus }$ in the equation of the third dissociation constant as we have calculated it above.
Now; $\begin{gathered}
\Rightarrow 4.0 \times {10^{ - 7}} = \dfrac{{\left[ {{A^{3 - }}} \right]\left( {2.4 \times {{10}^{ - 3}}} \right)}}{{1.7 \times {{10}^{ - 5}}}} \\
\Rightarrow \left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 9}}M \\
\end{gathered} $
Hence we have calculated$\left[ {{H^ \oplus }} \right] = \left[ {{H_2}{A^ - }} \right] = 2.4 \times {10^{ - 3}}M,\left[ {H{A^{2 - }}} \right] = 1.7 \times {10^{ - 5}},\left[ {{A^{3 - }}} \right] = 2.8 \times {10^{ - 9}}$
So, the correct answer is “Option A”.
Note:
1- We know that in the problem statement the value of first, second and third dissociation constant of citric aid is given.
2- So with the help of dissociation constant and dissociation equation we have calculated the value of concentration of the product.
Recently Updated Pages
Know The Difference Between Fluid And Liquid

Types of Solutions in Chemistry: Explained Simply

Difference Between Crystalline and Amorphous Solid: Table & Examples

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

