
Choose the correct general solution from the given option for the homogeneous differential equation \[\dfrac{{dy}}{{dx}} = \sin x + 2x\].
A \[y = {x^2} - \cos x + c\]
B \[y = \cos x + {x^2} + c\]
C \[y = \cos x + 2 + c\]
D \[y = \cos x + 2 + c\]
Answer
232.8k+ views
Hint: The differential equation is a homogeneous differential equation. Hence to find a general solution, use variable separation methods. There are two variables x and y. Separate the x containing terms and y containing terms. Then integrate the equation to find a general solution of the differential equation.
Formula Used: \[\begin{array}{l}\int {\sin xdx} = \cos x + c\\\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\end{array}\]
Here, c is an arbitrary constant and n can not be zero.
Complete step by step solution: The given differential equation is \[\dfrac{{dy}}{{dx}} = \sin x + 2x\].
First simplify the equation by separating the x and y variables. Here, multiply by \[dx\]on both sides of the equation.
\[dy = \left( {\sin x + 2x} \right)dx\]
Remove the bracket on the right side of the equation.
\[dy = \sin xdx + 2xdx\]
Now, integrate both sides of the equation.
\[\begin{array}{l}\int {dy} = \int {\sin xdx} + \int {2xdx} \\y = \cos x + 2\int {xdx} \end{array}\]
Simplify the equation to find a general solution.
\[\begin{array}{l}y = \cos x + 2\dfrac{{{x^2}}}{2} + c\\y = \cos x + {x^2} + c\end{array}\]
Hence, the general solution is \[y = \cos x + {x^2} + c\] .
Option ‘A’ is correct
Note: The very common mistake while solving this kind of question is integration of \[\sin x\]is \[ - \cos x\]which is wrong. One more often mistake done here is integration of constant, which is arbitary need not to add it twice.
Formula Used: \[\begin{array}{l}\int {\sin xdx} = \cos x + c\\\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\end{array}\]
Here, c is an arbitrary constant and n can not be zero.
Complete step by step solution: The given differential equation is \[\dfrac{{dy}}{{dx}} = \sin x + 2x\].
First simplify the equation by separating the x and y variables. Here, multiply by \[dx\]on both sides of the equation.
\[dy = \left( {\sin x + 2x} \right)dx\]
Remove the bracket on the right side of the equation.
\[dy = \sin xdx + 2xdx\]
Now, integrate both sides of the equation.
\[\begin{array}{l}\int {dy} = \int {\sin xdx} + \int {2xdx} \\y = \cos x + 2\int {xdx} \end{array}\]
Simplify the equation to find a general solution.
\[\begin{array}{l}y = \cos x + 2\dfrac{{{x^2}}}{2} + c\\y = \cos x + {x^2} + c\end{array}\]
Hence, the general solution is \[y = \cos x + {x^2} + c\] .
Option ‘A’ is correct
Note: The very common mistake while solving this kind of question is integration of \[\sin x\]is \[ - \cos x\]which is wrong. One more often mistake done here is integration of constant, which is arbitary need not to add it twice.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

