
$B{{F}_{3}}$<$BC{{l}_{3}}$<$BB{{r}_{3}}$<$B{{I}_{3}}$
Above order is correct for:
(A) Bond angle
(B) Electron density on \[B\]
(C) Extent of back bending
(D) None
Answer
222k+ views
Hint: Electronegativity on a periodic table increases as we move from left to right and from bottom to top. And bond angle and acidic character of any molecule is inversely proportional to the electronegativity of the atom i.e. lesser the electronegativity, then more the atom is acidic and has more bond angle.
Complete step by step solution:
We can get the answer by referring to the electronegativity of the halides in the given question.
We know that the electronegativity of an element decreases down the group and increases across a period i.e. from left to right. So, the electronegativity of the halogens decreases from fluorine to iodine.
Hence, according to this $B{{F}_{3}}$ is more electronegative than $B{{I}_{3}}$ and so it should be the most Lewis acidic due to the electron-withdrawing nature of fluorine atoms. But the order is just the opposite due to back-bonding. Back bonding means a type of bonding that occurs between atoms in a compound in which one atom has a lone pair of electrons and the other has vacant orbital. It has a pi-bonding character.
So, back-bonding due to the lone pair of electrons of halogen atoms increases the electron density on $B$ centre, thereby reducing its Lewis acid character. Thus, this back-bonding is more in case of $B{{F}_{3}}$ due to similar size of orbitals of boron and fluorine and it decreases down the group due to increase in the size of the halogen atoms thereby increasing the bond angle of the boron trihalides.
Thus, we can see that,
The order of electronegativity, back-bonding nature decreases down the group but the bond angle and Lewis acidic, electron density and bond angle nature of the trihalides increases down the group.
Hence, the correct option is A.
Note: Effective overlapping of orbitals among the trihalides decreases due to the large size of p orbitals of halides thereby decreasing the electron deficiency of boron atom in its trihalides and bond length of the compound. Remember bond length is inversely proportional to the bond angle. The order will be like $1p-2p>3p-2p>2p-2p>4p-2p$ starting from boron iodide followed by boron bromide, boron chloride and boron fluoride. This is the decreasing order of Lewis acid character which is similar to the order of bond angle.
Complete step by step solution:
We can get the answer by referring to the electronegativity of the halides in the given question.
We know that the electronegativity of an element decreases down the group and increases across a period i.e. from left to right. So, the electronegativity of the halogens decreases from fluorine to iodine.
Hence, according to this $B{{F}_{3}}$ is more electronegative than $B{{I}_{3}}$ and so it should be the most Lewis acidic due to the electron-withdrawing nature of fluorine atoms. But the order is just the opposite due to back-bonding. Back bonding means a type of bonding that occurs between atoms in a compound in which one atom has a lone pair of electrons and the other has vacant orbital. It has a pi-bonding character.
So, back-bonding due to the lone pair of electrons of halogen atoms increases the electron density on $B$ centre, thereby reducing its Lewis acid character. Thus, this back-bonding is more in case of $B{{F}_{3}}$ due to similar size of orbitals of boron and fluorine and it decreases down the group due to increase in the size of the halogen atoms thereby increasing the bond angle of the boron trihalides.
Thus, we can see that,
The order of electronegativity, back-bonding nature decreases down the group but the bond angle and Lewis acidic, electron density and bond angle nature of the trihalides increases down the group.
Hence, the correct option is A.
Note: Effective overlapping of orbitals among the trihalides decreases due to the large size of p orbitals of halides thereby decreasing the electron deficiency of boron atom in its trihalides and bond length of the compound. Remember bond length is inversely proportional to the bond angle. The order will be like $1p-2p>3p-2p>2p-2p>4p-2p$ starting from boron iodide followed by boron bromide, boron chloride and boron fluoride. This is the decreasing order of Lewis acid character which is similar to the order of bond angle.
Recently Updated Pages
Types of Solutions in Chemistry: Explained Simply

States of Matter Chapter For JEE Main Chemistry

Know The Difference Between Fluid And Liquid

Difference Between Crystalline and Amorphous Solid: Table & Examples

Conduction Explained: Definition, Examples & Science for Students

Balancing of Redox Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

