
At a hydroelectric power plant, the water pressure head is at a height of $300\,\,m$ and the water flow available is $100\,\,m{s^{ - 1}}$. If the turbine generator efficiency is $60\,\% $. estimate the electric power available from the plant $\left( g = {9.8\,\,m{s^{ - 2}}} \right)$.
Answer
216.3k+ views
Hint: Efficiency of a turbine can be expressed as the ratio of output mechanical shaft power of the turbine to input mechanical fluid power of the turbine. That is the turbine efficiency is the ratio of actual work output of the turbine to the net input energy supplied in the form of fuel of the turbine.
Useful formula:
The power generated by the turbine generator is given by the formula of;
$P = mgh$
Where, $P$ denotes the power generated by the power hydroelectric plant, $m$ mass of the water flow, $g$ denotes the acceleration due to gravity,$h$ denotes the height of the pressurised water head.
Complete step by step solution:
The data given in the problem are;
Height of the water power head is, $h = 300\,\,m$,
Velocity of the water flow is, $v = 100\,\,{m^3}{s^{ - 1}}$,
Efficiency of the turbine generator, $\eta = 60\,\% $.
Acceleration due to gravity, $g = 9.8\,\,m{s^{ - 2}}$.
The power generated by the turbine generator is given by the formula of;
$P = mgh$
We know that $m = \rho v$;
Where, $\rho $ denotes the density of the water flow, $v$ denotes the rate of which the water flows.
That is;
$P = \rho v \times gh$
Substitute the values of gravity, height, velocity of the water on the above equation;
$
P = 1000 \times 100 \times 9.8 \times 300 \\
P = 294 \times {10^6}\,\,W \\
P = 294\,\,MW \\
$
The power generated by the turbine generator is given as $P = 294\,\,MW.$
The estimated power available for the plant is given as;
${P_a} = \eta \times P$
Where, ${P_a}$ denotes the estimated electric power available for the plant, $\eta $ denotes the efficiency of the turbine of the generator.
Substitute the value of efficiency of the turbine generator and the power of the generator;
$
{P_a} = 60\,\% \times 294 \\
{P_a} = \dfrac{{60}}{{100}} \times 294 \\
{P_a} = 0.6 \times 294 \\
{P_a} = 176.4\,\,MW \\
$
Therefore, the estimated power available for the plant is given as \[{P_a} = 176.4\,\,MW\].
Note: the estimated power available for the plant is directly proportional to the efficiency of the electric turbine motor that is if the efficiency of the electric turbine motor the power available for the plant also increases along with the efficiency.
Useful formula:
The power generated by the turbine generator is given by the formula of;
$P = mgh$
Where, $P$ denotes the power generated by the power hydroelectric plant, $m$ mass of the water flow, $g$ denotes the acceleration due to gravity,$h$ denotes the height of the pressurised water head.
Complete step by step solution:
The data given in the problem are;
Height of the water power head is, $h = 300\,\,m$,
Velocity of the water flow is, $v = 100\,\,{m^3}{s^{ - 1}}$,
Efficiency of the turbine generator, $\eta = 60\,\% $.
Acceleration due to gravity, $g = 9.8\,\,m{s^{ - 2}}$.
The power generated by the turbine generator is given by the formula of;
$P = mgh$
We know that $m = \rho v$;
Where, $\rho $ denotes the density of the water flow, $v$ denotes the rate of which the water flows.
That is;
$P = \rho v \times gh$
Substitute the values of gravity, height, velocity of the water on the above equation;
$
P = 1000 \times 100 \times 9.8 \times 300 \\
P = 294 \times {10^6}\,\,W \\
P = 294\,\,MW \\
$
The power generated by the turbine generator is given as $P = 294\,\,MW.$
The estimated power available for the plant is given as;
${P_a} = \eta \times P$
Where, ${P_a}$ denotes the estimated electric power available for the plant, $\eta $ denotes the efficiency of the turbine of the generator.
Substitute the value of efficiency of the turbine generator and the power of the generator;
$
{P_a} = 60\,\% \times 294 \\
{P_a} = \dfrac{{60}}{{100}} \times 294 \\
{P_a} = 0.6 \times 294 \\
{P_a} = 176.4\,\,MW \\
$
Therefore, the estimated power available for the plant is given as \[{P_a} = 176.4\,\,MW\].
Note: the estimated power available for the plant is directly proportional to the efficiency of the electric turbine motor that is if the efficiency of the electric turbine motor the power available for the plant also increases along with the efficiency.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

