
At a given temperature, what is the root mean square velocity of a gas molecule of mass $m$ proportional to?
A. ${m^0}$
B. $m$
C. $\sqrt m $
D. $\dfrac{1}{{\sqrt m }}$
Answer
232.8k+ views
Hint:Root mean square velocity of individual gas molecules is given by ${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ , where T is the temperature of gas molecules in Kelvin, M is the molar mass of the gas and $R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$ . To solve the above question, use this formula of root mean square velocity.
Formula used:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $
Here, T is the temperature of gas molecules in Kelvin,
M is the molar mass of the gas and
$R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$.
Complete answer:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ … (1)
Now, we know that Molar mass of a gas molecule is given by the ratio of molecular mass, $m$ of the gas and number of moles, $n$ , that is,
$M = \dfrac{m}{n}$ … (2)
Substituting this in equation (1),
${v_{rms}} = \sqrt {\dfrac{{3RTn}}{m}} $
From the above relation, we can conclude that ${v_{rms}}$ is directly proportional to $\dfrac{1}{{\sqrt m }}$ .
Thus, the correct option is D.
Note: For individual gas molecules, root mean square velocity is calculated as ${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ . Root Mean Square velocity is directly proportional to the absolute temperature of the gas and inversely proportional to the molar mass.
Formula used:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $
Here, T is the temperature of gas molecules in Kelvin,
M is the molar mass of the gas and
$R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$.
Complete answer:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ … (1)
Now, we know that Molar mass of a gas molecule is given by the ratio of molecular mass, $m$ of the gas and number of moles, $n$ , that is,
$M = \dfrac{m}{n}$ … (2)
Substituting this in equation (1),
${v_{rms}} = \sqrt {\dfrac{{3RTn}}{m}} $
From the above relation, we can conclude that ${v_{rms}}$ is directly proportional to $\dfrac{1}{{\sqrt m }}$ .
Thus, the correct option is D.
Note: For individual gas molecules, root mean square velocity is calculated as ${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ . Root Mean Square velocity is directly proportional to the absolute temperature of the gas and inversely proportional to the molar mass.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

