
At a given temperature, what is the root mean square velocity of a gas molecule of mass $m$ proportional to?
A. ${m^0}$
B. $m$
C. $\sqrt m $
D. $\dfrac{1}{{\sqrt m }}$
Answer
162.6k+ views
Hint:Root mean square velocity of individual gas molecules is given by ${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ , where T is the temperature of gas molecules in Kelvin, M is the molar mass of the gas and $R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$ . To solve the above question, use this formula of root mean square velocity.
Formula used:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $
Here, T is the temperature of gas molecules in Kelvin,
M is the molar mass of the gas and
$R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$.
Complete answer:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ … (1)
Now, we know that Molar mass of a gas molecule is given by the ratio of molecular mass, $m$ of the gas and number of moles, $n$ , that is,
$M = \dfrac{m}{n}$ … (2)
Substituting this in equation (1),
${v_{rms}} = \sqrt {\dfrac{{3RTn}}{m}} $
From the above relation, we can conclude that ${v_{rms}}$ is directly proportional to $\dfrac{1}{{\sqrt m }}$ .
Thus, the correct option is D.
Note: For individual gas molecules, root mean square velocity is calculated as ${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ . Root Mean Square velocity is directly proportional to the absolute temperature of the gas and inversely proportional to the molar mass.
Formula used:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $
Here, T is the temperature of gas molecules in Kelvin,
M is the molar mass of the gas and
$R$ is the universal gas constant having a value of $8.314{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}$.
Complete answer:
RMS velocity of gas molecules is given by:
${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ … (1)
Now, we know that Molar mass of a gas molecule is given by the ratio of molecular mass, $m$ of the gas and number of moles, $n$ , that is,
$M = \dfrac{m}{n}$ … (2)
Substituting this in equation (1),
${v_{rms}} = \sqrt {\dfrac{{3RTn}}{m}} $
From the above relation, we can conclude that ${v_{rms}}$ is directly proportional to $\dfrac{1}{{\sqrt m }}$ .
Thus, the correct option is D.
Note: For individual gas molecules, root mean square velocity is calculated as ${v_{rms}} = \sqrt {\dfrac{{3RT}}{M}} $ . Root Mean Square velocity is directly proportional to the absolute temperature of the gas and inversely proportional to the molar mass.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
