
Assertion :- Vector addition is commutative.
Reason :- ($\vec{A}$+ $\vec{B}$) $\ne $ ($\vec{B}$+ $\vec{A}$)
( a ) Both assertion and reason are correct and reason is the correct explanation for assertion.
( b ) Both assertion and reason are correct and reason is not the correct explanation for assertion.
( c ) Assertion is correct but the reason is incorrect.
( d ) Both assertion and reason are incorrect.
Answer
185.7k+ views
Hint:
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
Recently Updated Pages
Electric Flux and Area Vector - Important Concepts for JEE

JEE Main 2023 (April 12th Shift 1) Physics Question Paper with Answer Key

Clemmensen and Wolff Kishner Reduction Important Concepts and Tips for JEE

All About Relations and Functions Complete Relation for JEE

Chain and Position Isomerism Important Concepts and Tips for JEE

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Displacement and Velocity-Time Graphs: Concepts, Differences & Application

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
