
Assertion :- Vector addition is commutative.
Reason :- ($\vec{A}$+ $\vec{B}$) $\ne $ ($\vec{B}$+ $\vec{A}$)
( a ) Both assertion and reason are correct and reason is the correct explanation for assertion.
( b ) Both assertion and reason are correct and reason is not the correct explanation for assertion.
( c ) Assertion is correct but the reason is incorrect.
( d ) Both assertion and reason are incorrect.
Answer
163.8k+ views
Hint:
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
In this question, we are given that the addition of a vector is commutative. And the commutative law says that in which order we add the terms doesn’t matter. That is x+y = y+x. We find the vector A + B is equal or not equal to vector B + A then we choose the correct option.
Complete step by step solution:
Consider that we have two vectors $\vec{A}$ and $\vec{B}$ and we suppose that these are in ‘n’ dimensions.
Therefore, we can write $\vec{A}$as
< ${{A}_{1}},{{A}_{2}},{{A}_{3}},.....................,{{A}_{n}}$> and
$\vec{B}$ can be written as
<${{B}_{1}},{{B}_{2}},{{B}_{3}},.....................,{{B}_{n}}$>
Now we can find out $\vec{A}$ + $\vec{B}$
That is $\vec{A}$ + $\vec{B}$ = < ${{A}_{1}}+{{B}_{1}},{{A}_{2}}+{{B}_{2}},{{A}_{3}}+{{B}_{3}},.....................,{{A}_{n}}+{{B}_{n}}$>
As all the ${{A}_{i}}'s$ and the ${{B}_{i}}'s$ are the real numbers, therefore we can write the above equation as
$\vec{A}$ + $\vec{B}$ = <${{B}_{1}}+{{A}_{1}},{{B}_{2}}+{{A}_{2}},{{B}_{3}}+{{A}_{3}},.....................,{{B}_{n}}+{{A}_{n}}$>
This can be called as $\vec{B}$+ $\vec{A}$
Since vector addition is commutative,
Therefore :- ($\vec{A}$+ $\vec{B}$) = ($\vec{B}$+ $\vec{A}$)
Hence, the assertion is correct but the reason is incorrect.
Thus, Option (C) is the correct answer.
Therefore, the correct option is C.
Note:
In this question, we have to add the two vectors. Students must keep in mind the basic properties of vectors and how these properties are implemented on vectors. Questions may be asked on other properties like additive, homogeneity etc.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Class 11 JEE Main Physics Mock Test 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
