
Assertion: ${{\text{H}}_{2}}\text{S}$ is more acidic than ${{\text{H}}_{2}}\text{O}$.
Reason: $\text{H-S}$ bond is more polar than $\text{H-O}$ bond.
(a) Both assertion and reason are correct and reason is the correct explanation for assertion
(b) Both assertion and reason are correct but reason is not the correct explanation for assertion.
(c) Assertion is correct but Reason is incorrect.
(d) Both assertion and reason are incorrect.
Answer
221.4k+ views
Hint: The answer of the assertion lies in the strength of O-H and S-H bond whereas the answer of reason lies in the electronegativity of oxygen and sulfur.
Complete step by step solution:
As mentioned in the hint, here, we need to predict the strength of the O-H and S-H bond. O-H bond is stronger than S-H bond. Also, O is more electronegative than S. Due to this, bond dissociation enthalpy of H-S bond is lower than that of H-O bond.
Therefore, ${{\text{H}}_{2}}\text{S}$ is more acidic than ${{\text{H}}_{2}}\text{O}$.
The polarity of a covalent bond depends on the difference in the electronegativity of the bonding atoms. The higher the difference in the electronegativities of the bonding atoms, the greater is the bond polarity. On the periodic table, (i) in each period: the electronegativity increases from left to right and (ii) in each group, the electronegativity decreases down the group from top to bottom. Using these trends on the periodic table, it is possible to predict which bond is polar. Therefore, the order of the polarity of the bonds of O and S with hydrogen is as follows: $\text{O-H >S-H}$
Hence, we can reach to the conclusion from the above discussion that
${{\text{H}}_{2}}\text{S}$ is more acidic than ${{\text{H}}_{2}}\text{O}$.
$\text{H-S}$ Bond is more polar than $\text{H-O}$bond.
Thus, the correct answer would be option (c) assertion is correct but reason is incorrect.
Note: Apart from that, we can also predict the nature of acidity on the basis of dissociation constant. Higher the dissociation constant, the stronger is the acid. Acids and bases are measured using the pH scale. Also, electronegativity can be explained as the tendency of an atom participating in a covalent bond to attract the bonding electrons. The most frequently used to measure electronegativity is the Pauling scale. Fluorine is the most electronegative element and has been assigned a value of 4.0 on Pauling scale.
Complete step by step solution:
As mentioned in the hint, here, we need to predict the strength of the O-H and S-H bond. O-H bond is stronger than S-H bond. Also, O is more electronegative than S. Due to this, bond dissociation enthalpy of H-S bond is lower than that of H-O bond.
Therefore, ${{\text{H}}_{2}}\text{S}$ is more acidic than ${{\text{H}}_{2}}\text{O}$.
The polarity of a covalent bond depends on the difference in the electronegativity of the bonding atoms. The higher the difference in the electronegativities of the bonding atoms, the greater is the bond polarity. On the periodic table, (i) in each period: the electronegativity increases from left to right and (ii) in each group, the electronegativity decreases down the group from top to bottom. Using these trends on the periodic table, it is possible to predict which bond is polar. Therefore, the order of the polarity of the bonds of O and S with hydrogen is as follows: $\text{O-H >S-H}$
Hence, we can reach to the conclusion from the above discussion that
${{\text{H}}_{2}}\text{S}$ is more acidic than ${{\text{H}}_{2}}\text{O}$.
$\text{H-S}$ Bond is more polar than $\text{H-O}$bond.
Thus, the correct answer would be option (c) assertion is correct but reason is incorrect.
Note: Apart from that, we can also predict the nature of acidity on the basis of dissociation constant. Higher the dissociation constant, the stronger is the acid. Acids and bases are measured using the pH scale. Also, electronegativity can be explained as the tendency of an atom participating in a covalent bond to attract the bonding electrons. The most frequently used to measure electronegativity is the Pauling scale. Fluorine is the most electronegative element and has been assigned a value of 4.0 on Pauling scale.
Recently Updated Pages
Is PPh3 a strong ligand class 12 chemistry JEE_Main

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Organic Compounds Containing Nitrogen Mock Test

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

JEE Main Mock Test 2025-26: Purification & Characterisation of Organic Compounds

JEE Main Chemical Kinetics Mock Test 2025-26: Free Practice Online

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

The D and F Block Elements Class 12 Chemistry Chapter 4 CBSE Notes - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

