
What are the properties of matrix multiplication?
Answer
232.8k+ views
Hints Recall the formation of a matrix that is how a matrix looks like, then write the properties of matrix multiplication.
Complete step by step solution
Example of a matrix is \[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] .
Now, suppose two matrices are \[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}p&q&r\\s&t&u\\v&w&x\end{array}} \right]\].
Hence, the multiplication of two matrices is,
\[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right].\left[ {\begin{array}{*{20}{c}}p&q&r\\s&t&u\\v&w&x\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ap + bs + cv}&{aq + bt + cw}&{ar + bu + cx}\\{dp + es + fv}&{dq + et + fw}&{dr + eu + fx}\\{gp + hs + iv}&{gq + ht + iw}&{gr + hu + ix}\end{array}} \right]\]
The properties of a matrix multiplication are,
(1) Associative law: If A, B and C are non-zero matrices then \[(AB)C = A(BC)\] .
(2) Distributive law: If A, B and C are non-zero matrices, then \[A.(B + C) = A.B + A.C\]
Or, \[(B + C).A = B.A + C.A\].
(3) Multiplicative identity property: If I be the identity matrix then \[A.I = I.A = A\] .
The properties of a matrix multiplication are associative law, distributive law and the identity property.
Additional information:
The matrix multiplication does not follow commutative property. Suppose the order of A is \[m\times n\] and the order of B is \[i \times j\]. Then matrix multiplication of AB exists if i = n.
Note Sometime students give the proofs with the properties, but that is not needed as the question is asking only to mention the properties of matrix multiplication. Only you can do that show the matrix multiplication but not elaborately just state the multiplication and then go for the properties of matrix multiplication as per the requirement of the question.
Complete step by step solution
Example of a matrix is \[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] .
Now, suppose two matrices are \[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\]and \[\left[ {\begin{array}{*{20}{c}}p&q&r\\s&t&u\\v&w&x\end{array}} \right]\].
Hence, the multiplication of two matrices is,
\[\left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right].\left[ {\begin{array}{*{20}{c}}p&q&r\\s&t&u\\v&w&x\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ap + bs + cv}&{aq + bt + cw}&{ar + bu + cx}\\{dp + es + fv}&{dq + et + fw}&{dr + eu + fx}\\{gp + hs + iv}&{gq + ht + iw}&{gr + hu + ix}\end{array}} \right]\]
The properties of a matrix multiplication are,
(1) Associative law: If A, B and C are non-zero matrices then \[(AB)C = A(BC)\] .
(2) Distributive law: If A, B and C are non-zero matrices, then \[A.(B + C) = A.B + A.C\]
Or, \[(B + C).A = B.A + C.A\].
(3) Multiplicative identity property: If I be the identity matrix then \[A.I = I.A = A\] .
The properties of a matrix multiplication are associative law, distributive law and the identity property.
Additional information:
The matrix multiplication does not follow commutative property. Suppose the order of A is \[m\times n\] and the order of B is \[i \times j\]. Then matrix multiplication of AB exists if i = n.
Note Sometime students give the proofs with the properties, but that is not needed as the question is asking only to mention the properties of matrix multiplication. Only you can do that show the matrix multiplication but not elaborately just state the multiplication and then go for the properties of matrix multiplication as per the requirement of the question.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

