
An electron of mass ${m_e}$ and a proton of mass ${m_p} = 1836{m_e}$ are moving with the same speed. The ratio of their de Broglie wavelength $\dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}}$ will be:
(A) $918$
(B) $1836$
(C) $\dfrac{1}{{1836}}$
(D) $1$
Answer
163.2k+ views
Hint: In order to solve this question, we will first calculate the de Broglie wavelength for an electron of given mass and velocity and then de Broglie wavelength for a proton and then we will find the required ratio of their wavelengths.
Formula Used:
The de Broglie wavelength is calculated using the formula:
$\lambda = \dfrac{h}{{mv}}$
where
h-The Planck’s constant
m-The mass of a particle and
v - The velocity of the particle
Complete answer:
We have given that, an electron and proton are moving with the same speed, let us assume their velocity is $v$ and the relation between the mass of the electron and proton is given as ${m_p} = 1836{m_e}$
Now, the de Broglie wavelength for an electron is calculated using the formula
$\lambda = \dfrac{h}{{mv}}$ we get,
${\lambda _{electron}} = \dfrac{h}{{{m_e}v}} \to (i)$
The de Broglie wavelength for proton is calculated as ${\lambda _{proton}} = \dfrac{h}{{{m_p}v}} \to (ii)$
Now, divide the equation (i) by (ii) we get,
$
\dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = \dfrac{{\dfrac{h}{{{m_e}v}}}}{{\dfrac{h}{{{m_p}v}}}} \\
\dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = \dfrac{{{m_p}}}{{{m_e}}} \\
$
Since, we have given that ${m_p} = 1836{m_e}$ or by rearranging it we have $\dfrac{{{m_p}}}{{{m_e}}} = 1836$
Substituting the above value in the equation we get:
$\dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = \dfrac{{{m_p}}}{{{m_e}}}$
$\Rightarrow \dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = 1836$
Therefore, the ratio of the wavelength of electron and proton is 1836.
Hence, the correct option is (B) 1836
Note: It should be remembered that de Broglie wavelength is the wavelength associated with all the particles however larger bodies having larger mass show a very negligible amount of wave nature whereas for elementary particles this effect is very noticeable.
Formula Used:
The de Broglie wavelength is calculated using the formula:
$\lambda = \dfrac{h}{{mv}}$
where
h-The Planck’s constant
m-The mass of a particle and
v - The velocity of the particle
Complete answer:
We have given that, an electron and proton are moving with the same speed, let us assume their velocity is $v$ and the relation between the mass of the electron and proton is given as ${m_p} = 1836{m_e}$
Now, the de Broglie wavelength for an electron is calculated using the formula
$\lambda = \dfrac{h}{{mv}}$ we get,
${\lambda _{electron}} = \dfrac{h}{{{m_e}v}} \to (i)$
The de Broglie wavelength for proton is calculated as ${\lambda _{proton}} = \dfrac{h}{{{m_p}v}} \to (ii)$
Now, divide the equation (i) by (ii) we get,
$
\dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = \dfrac{{\dfrac{h}{{{m_e}v}}}}{{\dfrac{h}{{{m_p}v}}}} \\
\dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = \dfrac{{{m_p}}}{{{m_e}}} \\
$
Since, we have given that ${m_p} = 1836{m_e}$ or by rearranging it we have $\dfrac{{{m_p}}}{{{m_e}}} = 1836$
Substituting the above value in the equation we get:
$\dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = \dfrac{{{m_p}}}{{{m_e}}}$
$\Rightarrow \dfrac{{{\lambda _{electron}}}}{{{\lambda _{proton}}}} = 1836$
Therefore, the ratio of the wavelength of electron and proton is 1836.
Hence, the correct option is (B) 1836
Note: It should be remembered that de Broglie wavelength is the wavelength associated with all the particles however larger bodies having larger mass show a very negligible amount of wave nature whereas for elementary particles this effect is very noticeable.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE
