
An athlete takes $\text{ 100 g }$ of glucose of energy equivalent to$\text{ }1560\text{ kJ }$. How much energy is taken up by $\text{ 1 g }$ a molecule of glucose?
(A) \[\text{ 15}\text{.6 kJ }\]
(B) \[\text{ 2808 kJ }\]
(C) \[\text{ 1560 kJ }\]
(D) \[\text{ 28}\text{.08 kJ }\]
Answer
233.1k+ views
Hint: Here, the energy produced by the $\text{ 1 g }$molecules of the glucose is determined by the amount of energy produced by the 1 mole of glucose. The mole is the ratio of the weight of the substance to the molecular weight. Use the concept of the mole to find out the amount of glucose in one gram of molecule and equate it to get the desired answer.
Complete step by step solution:
We have given that the athlete takes up $\text{ 100 g }$ of the glucose.
The $\text{ 100 g }$ of the glucose is equivalent to $\text{ }1560\text{ kJ }$ of the energy equivalent.
We have to find the amount of energy taken by the athlete when he consumes $\text{ 1 g }$ of glucose.
We can write the relation as,
$\text{ 100 g }=\text{ 1560 kJ}$
And we have to find the ‘X’ amount of energy.
$\text{ 1 g }=\text{ X kJ}$
Let's consider one gram of a glucose molecule. The 1 gram of glucose molecules would is considered as the 1 mole of glucose. We know that. 1 mole is equalled to the number of atoms present per molecule of glucose.
We know that the mass of 1 mole of glucose is equalled to the molecular weight of glucose which is$\text{ 180 g }$.
In other words, the 1 mole of glucose contains $\text{ 180 g }$of the glucose molecule.
$\text{ 1 mole of glucose = 180 g of Glucose }$
We know that one mole is equalled to one gram of molecules. Thus, we have,
$\text{ 1 g of glucose = 180 g of Glucose }$
Now, if $\text{ 100 g }$of glucose gives $\text{ }1560\text{ kJ }$energy equivalent then 1 g of glucose i.e. $\text{ 180 g }$Of glucose molecule would give,
\[\begin{matrix}
\text{100 g } & = & \text{1560 kJ} \\
180\text{ g} & = & \text{X Energy} \\
\end{matrix}\]
On solving further we get,
\[\text{Energy = }\left( \dfrac{1560}{100} \right)\text{ }\times \text{ 180 kJ = 2808 kJ}\]
Therefore, the energy taken when an athlete consumes the 1 gram of glucose is equalled to\[\text{ 2808 kJ }\].
Hence, (B) is the correct option.
Note: Note that, we have to consider the molecules of the glucose. Thus, we are considering that the 1 mole of glucose has $\text{ 180 g }$ of glucose in it. This is because 1 gram of a substance will be equal to the 1 mole of the substance only when it contains the weight which equals its molecular weight. In simpler words, the weight taken must be equal to the molecular weight.
$\begin{align}
&\text{ no}\text{.of moles = }\dfrac{\text{weight}}{\text{mol}\text{.wt}} \\
&\text{For 1 mole , weight = molecular weight} \\
\end{align}$
Complete step by step solution:
We have given that the athlete takes up $\text{ 100 g }$ of the glucose.
The $\text{ 100 g }$ of the glucose is equivalent to $\text{ }1560\text{ kJ }$ of the energy equivalent.
We have to find the amount of energy taken by the athlete when he consumes $\text{ 1 g }$ of glucose.
We can write the relation as,
$\text{ 100 g }=\text{ 1560 kJ}$
And we have to find the ‘X’ amount of energy.
$\text{ 1 g }=\text{ X kJ}$
Let's consider one gram of a glucose molecule. The 1 gram of glucose molecules would is considered as the 1 mole of glucose. We know that. 1 mole is equalled to the number of atoms present per molecule of glucose.
We know that the mass of 1 mole of glucose is equalled to the molecular weight of glucose which is$\text{ 180 g }$.
In other words, the 1 mole of glucose contains $\text{ 180 g }$of the glucose molecule.
$\text{ 1 mole of glucose = 180 g of Glucose }$
We know that one mole is equalled to one gram of molecules. Thus, we have,
$\text{ 1 g of glucose = 180 g of Glucose }$
Now, if $\text{ 100 g }$of glucose gives $\text{ }1560\text{ kJ }$energy equivalent then 1 g of glucose i.e. $\text{ 180 g }$Of glucose molecule would give,
\[\begin{matrix}
\text{100 g } & = & \text{1560 kJ} \\
180\text{ g} & = & \text{X Energy} \\
\end{matrix}\]
On solving further we get,
\[\text{Energy = }\left( \dfrac{1560}{100} \right)\text{ }\times \text{ 180 kJ = 2808 kJ}\]
Therefore, the energy taken when an athlete consumes the 1 gram of glucose is equalled to\[\text{ 2808 kJ }\].
Hence, (B) is the correct option.
Note: Note that, we have to consider the molecules of the glucose. Thus, we are considering that the 1 mole of glucose has $\text{ 180 g }$ of glucose in it. This is because 1 gram of a substance will be equal to the 1 mole of the substance only when it contains the weight which equals its molecular weight. In simpler words, the weight taken must be equal to the molecular weight.
$\begin{align}
&\text{ no}\text{.of moles = }\dfrac{\text{weight}}{\text{mol}\text{.wt}} \\
&\text{For 1 mole , weight = molecular weight} \\
\end{align}$
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

