
An A.P., a G.P. and a H.P. have the same first and last terms and the same odd number of terms. The middle terms of the three series are in
A. A.P.
B. G.P.
C. H.P.
D. None of these
Answer
161.1k+ views
Hint
In a quadratic factorization employing splitting of the middle term, where \[x\] is the product of two factors and last term is the sum of the two factors, total of each phrase in an AP. The eighth term, then, will be the middle term of an arithmetic progression, is the correct response. The two middle terms are the \[n/2\] and \[n/2{\rm{ }} + {\rm{ }}1\] terms if ' \[n\] ' is even. The eighth and ninth words, then, will serve as the progression's middle terms.
A middle term in logic is a term that appears in both premises but not the conclusion of a categorical syllogism (as a subject or predicate of a categorical proposition).
Formula used:
if A.M between a and b is
A.M = \[\frac{{(a + b)}}{2}\]
if G.M between a and b is
G.M = \[\sqrt {ab} \]
if H.M between a and b is
\[\frac{{2ab}}{{(a + b)}}\]
Complete step-by-step solution
Assume A.P., G.P., and H.P.'s first and final terms.
Let the first and last terms of A.P., G.P., and H.P., all of which contain an odd number of words, be a and b.
Now, calculate the centre term of A.P., G.P., and H.P.
The centre term of A.P is \[\frac{{(a + b)}}{2}\] ---(1)
The centre term of G.P is \[\sqrt {ab} \] ---(2)
The centre term of H.P is \[\frac{{2ab}}{{(a + b)}}\] ---(3)
Here, the middle terms of the three series are multiplied to calculate the answer
Equation (1) and (3) are multiplied
\[\frac{{(a + b)}}{2} \times \frac{{2ab}}{{(a + b)}}\]
This then becomes
\[ = > ab = > {(\sqrt {ab} )^2}\]
This is equal to the square value of the center term of G.P.
So, it is proved that all the terms are in G.P.
Therefore, the correct option is B.
Note
AP, GP, and HP stand for the average or mean of the series. Arithmetic Mean, Geometric Mean, and Harmonic Mean, respectively, are denoted by the letters AM, GM, and HM. The abbreviations AP, GP, and HP stand for Arithmetic Progression, Geometric Progression, and Harmonic Progression, respectively. Each next phrase in a geometric progression is obtained by multiplying the common ratio by the term that came before it.
If the reciprocal of the terms is in AP, a series of numbers is referred to as a harmonic progression.
In a quadratic factorization employing splitting of the middle term, where \[x\] is the product of two factors and last term is the sum of the two factors, total of each phrase in an AP. The eighth term, then, will be the middle term of an arithmetic progression, is the correct response. The two middle terms are the \[n/2\] and \[n/2{\rm{ }} + {\rm{ }}1\] terms if ' \[n\] ' is even. The eighth and ninth words, then, will serve as the progression's middle terms.
A middle term in logic is a term that appears in both premises but not the conclusion of a categorical syllogism (as a subject or predicate of a categorical proposition).
Formula used:
if A.M between a and b is
A.M = \[\frac{{(a + b)}}{2}\]
if G.M between a and b is
G.M = \[\sqrt {ab} \]
if H.M between a and b is
\[\frac{{2ab}}{{(a + b)}}\]
Complete step-by-step solution
Assume A.P., G.P., and H.P.'s first and final terms.
Let the first and last terms of A.P., G.P., and H.P., all of which contain an odd number of words, be a and b.
Now, calculate the centre term of A.P., G.P., and H.P.
The centre term of A.P is \[\frac{{(a + b)}}{2}\] ---(1)
The centre term of G.P is \[\sqrt {ab} \] ---(2)
The centre term of H.P is \[\frac{{2ab}}{{(a + b)}}\] ---(3)
Here, the middle terms of the three series are multiplied to calculate the answer
Equation (1) and (3) are multiplied
\[\frac{{(a + b)}}{2} \times \frac{{2ab}}{{(a + b)}}\]
This then becomes
\[ = > ab = > {(\sqrt {ab} )^2}\]
This is equal to the square value of the center term of G.P.
So, it is proved that all the terms are in G.P.
Therefore, the correct option is B.
Note
AP, GP, and HP stand for the average or mean of the series. Arithmetic Mean, Geometric Mean, and Harmonic Mean, respectively, are denoted by the letters AM, GM, and HM. The abbreviations AP, GP, and HP stand for Arithmetic Progression, Geometric Progression, and Harmonic Progression, respectively. Each next phrase in a geometric progression is obtained by multiplying the common ratio by the term that came before it.
If the reciprocal of the terms is in AP, a series of numbers is referred to as a harmonic progression.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
