
An AC voltage is applied to a resistance $R$ and an inductor $L$ in series. If $R$ and the inductive reactance are both equal to $3\,\Omega $, the phase difference between the applied voltage and the current in the circuit is:
(A) $\dfrac{\pi }{4}$
(B) $\dfrac{\pi }{6}$
(C) $\dfrac{\pi }{2}$
Answer
146.4k+ views
Hint The phase difference between the applied voltage and the current in the circuit is determined by using the phase difference formula, by using the given information in the formula, and taking the ${\tan ^{ - 1}}$ for the answer, the phase difference can be determined.
Useful formula
The phase difference between the applied voltage and the current in the circuit is given by,
$\tan \phi = \dfrac{{{X_L}}}{R}$
Where, $\phi $ is the phase difference between the applied voltage and the current, ${X_L}$ is the inductive reactance of the inductor and $R$ is the applied resistance of the circuit.
Complete step by step solution
Given that,
The resistance of the circuit is, $R = 3\,\Omega $,
The inductive reactance of the inductor is, ${X_L} = 3\,\Omega $.
Now,
The phase difference between the applied voltage and the current in the circuit is given by,
$\tan \phi = \dfrac{{{X_L}}}{R}\,..................\left( 1 \right)$
By substituting the inductive reactance of the inductor and the resistance in the above equation (1), then the above equation (1) is written as,
$\tan \phi = \dfrac{3}{3}$
By dividing the terms in the above equation, then the above equation is written as,
$\tan \phi = 1$
By rearranging the terms in the above equation, then the above equation is written as,
$\phi = {\tan ^{ - 1}}1$
From the trigonometry, the value of the ${\tan ^{ - 1}}\left( 1 \right) = {45^ \circ }$,
$\phi = {45^ \circ }$
Then the angle ${45^ \circ }$ is equal to the $\dfrac{\pi }{4}$, then the above equation is written as,
$\phi = \dfrac{\pi }{4}$
Thus, the above equation shows the phase difference between the applied voltage and the current in the circuit.
Hence, the option (A) is the correct answer.
NoteIn this problem we must know about the $\pi $ values for the different angles, in trigonometry there are different $\pi $ values for different angles. Here we use the angle ${45^ \circ }$ and the $\pi $ value is $\dfrac{\pi }{4}$, like that for different angles different $\pi $ values are available.
Useful formula
The phase difference between the applied voltage and the current in the circuit is given by,
$\tan \phi = \dfrac{{{X_L}}}{R}$
Where, $\phi $ is the phase difference between the applied voltage and the current, ${X_L}$ is the inductive reactance of the inductor and $R$ is the applied resistance of the circuit.
Complete step by step solution
Given that,
The resistance of the circuit is, $R = 3\,\Omega $,
The inductive reactance of the inductor is, ${X_L} = 3\,\Omega $.
Now,
The phase difference between the applied voltage and the current in the circuit is given by,
$\tan \phi = \dfrac{{{X_L}}}{R}\,..................\left( 1 \right)$
By substituting the inductive reactance of the inductor and the resistance in the above equation (1), then the above equation (1) is written as,
$\tan \phi = \dfrac{3}{3}$
By dividing the terms in the above equation, then the above equation is written as,
$\tan \phi = 1$
By rearranging the terms in the above equation, then the above equation is written as,
$\phi = {\tan ^{ - 1}}1$
From the trigonometry, the value of the ${\tan ^{ - 1}}\left( 1 \right) = {45^ \circ }$,
$\phi = {45^ \circ }$
Then the angle ${45^ \circ }$ is equal to the $\dfrac{\pi }{4}$, then the above equation is written as,
$\phi = \dfrac{\pi }{4}$
Thus, the above equation shows the phase difference between the applied voltage and the current in the circuit.
Hence, the option (A) is the correct answer.
NoteIn this problem we must know about the $\pi $ values for the different angles, in trigonometry there are different $\pi $ values for different angles. Here we use the angle ${45^ \circ }$ and the $\pi $ value is $\dfrac{\pi }{4}$, like that for different angles different $\pi $ values are available.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Ideal and Non-Ideal Solutions Raoult's Law - JEE
