
Among the following which has trigonal pyramidal geometry?
A.\[{\text{B}}{{\text{H}}_3}\]
B.\[{{\text{H}}_2}{\text{O}}\]
C.\[{\text{C}}{{\text{H}}_4}\]
D.\[{\text{N}}{{\text{H}}_3}\]
E.\[{\text{AlC}}{{\text{l}}_3}\]
Answer
232.8k+ views
Hint: For calculation of geometry we much know the hybridization of the central atom. To calculate hybridization we need to know the numbers of lone pair and bond pair electrons are present in the given molecule. Depending on them, the hybridization and hence, geometry will vary.
Complete step by step solution:
To have a trigonal pyramidal geometry we need to have 3 bond pair of electron and 1 lone pair of electron. Trigonal pyramidal geometry is actually formed out of tetrahedral geometry. In tetrahedral geometry all 4 are bond pairs, replacing one bond pair with a lone pair will us trigonal pyramidal geometry. Let us check the bond pair and lone pair in each case:
In \[{\text{B}}{{\text{H}}_3}\] and \[{\text{AlC}}{{\text{l}}_3}\]since 3 hydrogen atoms are attached that means 3 bond pair of electrons are present, but boron and aluminium have no lone pairs. They are group 13 elements and hence have valency 3 and no other electrons. So this option is eliminated.
In \[{{\text{H}}_2}{\text{O}}\] oxygen have 6 electrons, out of which 2 electrons bonded with hydrogen will form 2 bond pair and rest will make 2 lone pair of electrons, which is not required and hence this option stands wrong.
In \[{\text{C}}{{\text{H}}_4}\] carbon has 4 electron and all are bonding so no lone pair are present here.
In \[{\text{N}}{{\text{H}}_3}\] nitrogen has 5 electrons in its valance shell and hence is bonded with 3 hydrogen atoms. That makes 3 bond pair and one lone pair and hence \[{\text{N}}{{\text{H}}_3}\] had trigonal geometry.
Hence correct option is D.
Note: Often geometry and shape are confused. We generally use them as same. Actually geometry of \[{{\text{H}}_2}{\text{O}}\], \[{\text{C}}{{\text{H}}_4}\] and \[{\text{N}}{{\text{H}}_3}\]is same that is tetrahedral but their shapes vary. Water has bent shape where as methane has tetrahedral shape and ammonia has trigonal pyramidal shape. Geometry includes both lone pair and bond pair while shape only includes bond pairs.
Complete step by step solution:
To have a trigonal pyramidal geometry we need to have 3 bond pair of electron and 1 lone pair of electron. Trigonal pyramidal geometry is actually formed out of tetrahedral geometry. In tetrahedral geometry all 4 are bond pairs, replacing one bond pair with a lone pair will us trigonal pyramidal geometry. Let us check the bond pair and lone pair in each case:
In \[{\text{B}}{{\text{H}}_3}\] and \[{\text{AlC}}{{\text{l}}_3}\]since 3 hydrogen atoms are attached that means 3 bond pair of electrons are present, but boron and aluminium have no lone pairs. They are group 13 elements and hence have valency 3 and no other electrons. So this option is eliminated.
In \[{{\text{H}}_2}{\text{O}}\] oxygen have 6 electrons, out of which 2 electrons bonded with hydrogen will form 2 bond pair and rest will make 2 lone pair of electrons, which is not required and hence this option stands wrong.
In \[{\text{C}}{{\text{H}}_4}\] carbon has 4 electron and all are bonding so no lone pair are present here.
In \[{\text{N}}{{\text{H}}_3}\] nitrogen has 5 electrons in its valance shell and hence is bonded with 3 hydrogen atoms. That makes 3 bond pair and one lone pair and hence \[{\text{N}}{{\text{H}}_3}\] had trigonal geometry.
Hence correct option is D.
Note: Often geometry and shape are confused. We generally use them as same. Actually geometry of \[{{\text{H}}_2}{\text{O}}\], \[{\text{C}}{{\text{H}}_4}\] and \[{\text{N}}{{\text{H}}_3}\]is same that is tetrahedral but their shapes vary. Water has bent shape where as methane has tetrahedral shape and ammonia has trigonal pyramidal shape. Geometry includes both lone pair and bond pair while shape only includes bond pairs.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

