
ABC is a right angled isosceles triangle with \[\angle B = {90^ \circ }\]. If D is a point on AB, so that \[\angle DCB = {15^ \circ }\] and if AD = 35 cm, then find CD.
A. \[35\sqrt 2 \]cm
B. \[70\sqrt 2 \]cm
C. \[\dfrac{{35\sqrt 3 }}{2}\] cm
D. \[35\sqrt 6 \] cm
E. \[\dfrac{{35\sqrt 2 }}{2}\] cm
Answer
163.2k+ views
Hint: First we will draw a triangle according to the question. Then we will find the side BC and \[\angle CDB\]. Then we will apply sine law on triangle BCD to calculate the value of CD.
Formula used:
\[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
\[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:

Image :Triangle ABC
Given that, the triangle is a right angled isosceles triangle with \[\angle B = {90^ \circ }\].Two sides and two angles of an isosceles triangle are the same.
Thus AB = BC, since AC is hypotenuse and a hypotenuse of a triangle always greater than the rest two legs.
Assume that, DB = x.
So, AB = x+35
Since AB = BC, so BC = x+35.
Since BDC is triangle and \[\angle CBD = {90^ \circ }\] and \[\angle DCB = {15^ \circ }\], thus \[\angle CDB = {180^ \circ } - {15^ \circ } - {90^ \circ } = {75^ \circ }\].
Now we apply sine law on triangle BDC:
\[\dfrac{{\sin B}}{{DC}} = \dfrac{{\sin C}}{{DB}} = \dfrac{{\sin D}}{{BC}}\]
Now putting the value of unknown:
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\] …..(i)
Taking last two ratios
\[\dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\]
Substituting \[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\] and \[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{x} = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}{{35 + x}}\]
Cross multiply
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\left( {35 + x} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}x\]
Cancel out \[2\sqrt 2 \] from both sides
\[ \Rightarrow \left( {\sqrt 3 - 1} \right)\left( {35 + x} \right) = \left( {\sqrt 3 + 1} \right)x\]
\[ \Rightarrow 35\sqrt 3 + \sqrt 3 x - 35 - x = \sqrt 3 x + x\]
Calculate the value of x
\[ \Rightarrow 2x = 35\sqrt 3 - 35\]
\[ \Rightarrow x = \dfrac{{35\sqrt 3 - 35}}{2}\]
Taking first two ratios of (i)
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x}\]
Substitute the value of \[\sin {15^ \circ }\] and x
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{{\dfrac{{35\sqrt 3 - 35}}{2}}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\sqrt 3 - 35}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{1}{{35\sqrt 2 }}\]
\[ \Rightarrow DC = 35\sqrt 2 \]
Hence option A is the correct option.
Note: Students often make mistakes to find the equal sides of the isosceles triangle ABC. They equate AB = AC. But the hypotenuse of a triangle is always greater than the legs. So, AB = BC.
Formula used:
\[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
\[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:

Image :Triangle ABC
Given that, the triangle is a right angled isosceles triangle with \[\angle B = {90^ \circ }\].Two sides and two angles of an isosceles triangle are the same.
Thus AB = BC, since AC is hypotenuse and a hypotenuse of a triangle always greater than the rest two legs.
Assume that, DB = x.
So, AB = x+35
Since AB = BC, so BC = x+35.
Since BDC is triangle and \[\angle CBD = {90^ \circ }\] and \[\angle DCB = {15^ \circ }\], thus \[\angle CDB = {180^ \circ } - {15^ \circ } - {90^ \circ } = {75^ \circ }\].
Now we apply sine law on triangle BDC:
\[\dfrac{{\sin B}}{{DC}} = \dfrac{{\sin C}}{{DB}} = \dfrac{{\sin D}}{{BC}}\]
Now putting the value of unknown:
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\] …..(i)
Taking last two ratios
\[\dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\]
Substituting \[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\] and \[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{x} = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}{{35 + x}}\]
Cross multiply
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\left( {35 + x} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}x\]
Cancel out \[2\sqrt 2 \] from both sides
\[ \Rightarrow \left( {\sqrt 3 - 1} \right)\left( {35 + x} \right) = \left( {\sqrt 3 + 1} \right)x\]
\[ \Rightarrow 35\sqrt 3 + \sqrt 3 x - 35 - x = \sqrt 3 x + x\]
Calculate the value of x
\[ \Rightarrow 2x = 35\sqrt 3 - 35\]
\[ \Rightarrow x = \dfrac{{35\sqrt 3 - 35}}{2}\]
Taking first two ratios of (i)
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x}\]
Substitute the value of \[\sin {15^ \circ }\] and x
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{{\dfrac{{35\sqrt 3 - 35}}{2}}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\sqrt 3 - 35}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{1}{{35\sqrt 2 }}\]
\[ \Rightarrow DC = 35\sqrt 2 \]
Hence option A is the correct option.
Note: Students often make mistakes to find the equal sides of the isosceles triangle ABC. They equate AB = AC. But the hypotenuse of a triangle is always greater than the legs. So, AB = BC.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NEET 2025 – Every New Update You Need to Know
