
ABC is a right angled isosceles triangle with \[\angle B = {90^ \circ }\]. If D is a point on AB, so that \[\angle DCB = {15^ \circ }\] and if AD = 35 cm, then find CD.
A. \[35\sqrt 2 \]cm
B. \[70\sqrt 2 \]cm
C. \[\dfrac{{35\sqrt 3 }}{2}\] cm
D. \[35\sqrt 6 \] cm
E. \[\dfrac{{35\sqrt 2 }}{2}\] cm
Answer
232.8k+ views
Hint: First we will draw a triangle according to the question. Then we will find the side BC and \[\angle CDB\]. Then we will apply sine law on triangle BCD to calculate the value of CD.
Formula used:
\[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
\[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:

Image :Triangle ABC
Given that, the triangle is a right angled isosceles triangle with \[\angle B = {90^ \circ }\].Two sides and two angles of an isosceles triangle are the same.
Thus AB = BC, since AC is hypotenuse and a hypotenuse of a triangle always greater than the rest two legs.
Assume that, DB = x.
So, AB = x+35
Since AB = BC, so BC = x+35.
Since BDC is triangle and \[\angle CBD = {90^ \circ }\] and \[\angle DCB = {15^ \circ }\], thus \[\angle CDB = {180^ \circ } - {15^ \circ } - {90^ \circ } = {75^ \circ }\].
Now we apply sine law on triangle BDC:
\[\dfrac{{\sin B}}{{DC}} = \dfrac{{\sin C}}{{DB}} = \dfrac{{\sin D}}{{BC}}\]
Now putting the value of unknown:
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\] …..(i)
Taking last two ratios
\[\dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\]
Substituting \[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\] and \[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{x} = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}{{35 + x}}\]
Cross multiply
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\left( {35 + x} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}x\]
Cancel out \[2\sqrt 2 \] from both sides
\[ \Rightarrow \left( {\sqrt 3 - 1} \right)\left( {35 + x} \right) = \left( {\sqrt 3 + 1} \right)x\]
\[ \Rightarrow 35\sqrt 3 + \sqrt 3 x - 35 - x = \sqrt 3 x + x\]
Calculate the value of x
\[ \Rightarrow 2x = 35\sqrt 3 - 35\]
\[ \Rightarrow x = \dfrac{{35\sqrt 3 - 35}}{2}\]
Taking first two ratios of (i)
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x}\]
Substitute the value of \[\sin {15^ \circ }\] and x
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{{\dfrac{{35\sqrt 3 - 35}}{2}}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\sqrt 3 - 35}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{1}{{35\sqrt 2 }}\]
\[ \Rightarrow DC = 35\sqrt 2 \]
Hence option A is the correct option.
Note: Students often make mistakes to find the equal sides of the isosceles triangle ABC. They equate AB = AC. But the hypotenuse of a triangle is always greater than the legs. So, AB = BC.
Formula used:
\[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
\[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:

Image :Triangle ABC
Given that, the triangle is a right angled isosceles triangle with \[\angle B = {90^ \circ }\].Two sides and two angles of an isosceles triangle are the same.
Thus AB = BC, since AC is hypotenuse and a hypotenuse of a triangle always greater than the rest two legs.
Assume that, DB = x.
So, AB = x+35
Since AB = BC, so BC = x+35.
Since BDC is triangle and \[\angle CBD = {90^ \circ }\] and \[\angle DCB = {15^ \circ }\], thus \[\angle CDB = {180^ \circ } - {15^ \circ } - {90^ \circ } = {75^ \circ }\].
Now we apply sine law on triangle BDC:
\[\dfrac{{\sin B}}{{DC}} = \dfrac{{\sin C}}{{DB}} = \dfrac{{\sin D}}{{BC}}\]
Now putting the value of unknown:
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\] …..(i)
Taking last two ratios
\[\dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\]
Substituting \[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\] and \[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{x} = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}{{35 + x}}\]
Cross multiply
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\left( {35 + x} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}x\]
Cancel out \[2\sqrt 2 \] from both sides
\[ \Rightarrow \left( {\sqrt 3 - 1} \right)\left( {35 + x} \right) = \left( {\sqrt 3 + 1} \right)x\]
\[ \Rightarrow 35\sqrt 3 + \sqrt 3 x - 35 - x = \sqrt 3 x + x\]
Calculate the value of x
\[ \Rightarrow 2x = 35\sqrt 3 - 35\]
\[ \Rightarrow x = \dfrac{{35\sqrt 3 - 35}}{2}\]
Taking first two ratios of (i)
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x}\]
Substitute the value of \[\sin {15^ \circ }\] and x
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{{\dfrac{{35\sqrt 3 - 35}}{2}}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\sqrt 3 - 35}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{1}{{35\sqrt 2 }}\]
\[ \Rightarrow DC = 35\sqrt 2 \]
Hence option A is the correct option.
Note: Students often make mistakes to find the equal sides of the isosceles triangle ABC. They equate AB = AC. But the hypotenuse of a triangle is always greater than the legs. So, AB = BC.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

