
ABC is a right angled isosceles triangle with \[\angle B = {90^ \circ }\]. If D is a point on AB, so that \[\angle DCB = {15^ \circ }\] and if AD = 35 cm, then find CD.
A. \[35\sqrt 2 \]cm
B. \[70\sqrt 2 \]cm
C. \[\dfrac{{35\sqrt 3 }}{2}\] cm
D. \[35\sqrt 6 \] cm
E. \[\dfrac{{35\sqrt 2 }}{2}\] cm
Answer
162k+ views
Hint: First we will draw a triangle according to the question. Then we will find the side BC and \[\angle CDB\]. Then we will apply sine law on triangle BCD to calculate the value of CD.
Formula used:
\[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
\[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:

Image :Triangle ABC
Given that, the triangle is a right angled isosceles triangle with \[\angle B = {90^ \circ }\].Two sides and two angles of an isosceles triangle are the same.
Thus AB = BC, since AC is hypotenuse and a hypotenuse of a triangle always greater than the rest two legs.
Assume that, DB = x.
So, AB = x+35
Since AB = BC, so BC = x+35.
Since BDC is triangle and \[\angle CBD = {90^ \circ }\] and \[\angle DCB = {15^ \circ }\], thus \[\angle CDB = {180^ \circ } - {15^ \circ } - {90^ \circ } = {75^ \circ }\].
Now we apply sine law on triangle BDC:
\[\dfrac{{\sin B}}{{DC}} = \dfrac{{\sin C}}{{DB}} = \dfrac{{\sin D}}{{BC}}\]
Now putting the value of unknown:
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\] …..(i)
Taking last two ratios
\[\dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\]
Substituting \[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\] and \[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{x} = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}{{35 + x}}\]
Cross multiply
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\left( {35 + x} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}x\]
Cancel out \[2\sqrt 2 \] from both sides
\[ \Rightarrow \left( {\sqrt 3 - 1} \right)\left( {35 + x} \right) = \left( {\sqrt 3 + 1} \right)x\]
\[ \Rightarrow 35\sqrt 3 + \sqrt 3 x - 35 - x = \sqrt 3 x + x\]
Calculate the value of x
\[ \Rightarrow 2x = 35\sqrt 3 - 35\]
\[ \Rightarrow x = \dfrac{{35\sqrt 3 - 35}}{2}\]
Taking first two ratios of (i)
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x}\]
Substitute the value of \[\sin {15^ \circ }\] and x
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{{\dfrac{{35\sqrt 3 - 35}}{2}}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\sqrt 3 - 35}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{1}{{35\sqrt 2 }}\]
\[ \Rightarrow DC = 35\sqrt 2 \]
Hence option A is the correct option.
Note: Students often make mistakes to find the equal sides of the isosceles triangle ABC. They equate AB = AC. But the hypotenuse of a triangle is always greater than the legs. So, AB = BC.
Formula used:
\[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
\[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Sine law:
\[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Complete step by step solution:

Image :Triangle ABC
Given that, the triangle is a right angled isosceles triangle with \[\angle B = {90^ \circ }\].Two sides and two angles of an isosceles triangle are the same.
Thus AB = BC, since AC is hypotenuse and a hypotenuse of a triangle always greater than the rest two legs.
Assume that, DB = x.
So, AB = x+35
Since AB = BC, so BC = x+35.
Since BDC is triangle and \[\angle CBD = {90^ \circ }\] and \[\angle DCB = {15^ \circ }\], thus \[\angle CDB = {180^ \circ } - {15^ \circ } - {90^ \circ } = {75^ \circ }\].
Now we apply sine law on triangle BDC:
\[\dfrac{{\sin B}}{{DC}} = \dfrac{{\sin C}}{{DB}} = \dfrac{{\sin D}}{{BC}}\]
Now putting the value of unknown:
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\] …..(i)
Taking last two ratios
\[\dfrac{{\sin {{15}^ \circ }}}{x} = \dfrac{{\sin {{75}^ \circ }}}{{35 + x}}\]
Substituting \[\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\] and \[\sin {75^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{x} = \dfrac{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}{{35 + x}}\]
Cross multiply
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\left( {35 + x} \right) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}x\]
Cancel out \[2\sqrt 2 \] from both sides
\[ \Rightarrow \left( {\sqrt 3 - 1} \right)\left( {35 + x} \right) = \left( {\sqrt 3 + 1} \right)x\]
\[ \Rightarrow 35\sqrt 3 + \sqrt 3 x - 35 - x = \sqrt 3 x + x\]
Calculate the value of x
\[ \Rightarrow 2x = 35\sqrt 3 - 35\]
\[ \Rightarrow x = \dfrac{{35\sqrt 3 - 35}}{2}\]
Taking first two ratios of (i)
\[\dfrac{{\sin {{90}^ \circ }}}{{DC}} = \dfrac{{\sin {{15}^ \circ }}}{x}\]
Substitute the value of \[\sin {15^ \circ }\] and x
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}}{{\dfrac{{35\sqrt 3 - 35}}{2}}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\sqrt 3 - 35}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \times \dfrac{2}{{35\left( {\sqrt 3 - 1} \right)}}\]
\[ \Rightarrow \dfrac{1}{{DC}} = \dfrac{1}{{35\sqrt 2 }}\]
\[ \Rightarrow DC = 35\sqrt 2 \]
Hence option A is the correct option.
Note: Students often make mistakes to find the equal sides of the isosceles triangle ABC. They equate AB = AC. But the hypotenuse of a triangle is always greater than the legs. So, AB = BC.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main Eligibility Criteria 2025

NIT Delhi Cut-Off 2025 - Check Expected and Previous Year Cut-Offs

JEE Main Seat Allotment 2025: How to Check, Documents Required and Fees Structure

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

NIT Durgapur JEE Main Cut-Off 2025 - Check Expected & Previous Year Cut-Offs

JEE Main 2024 Cut-off for NIT Surathkal

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
