Answer
Verified
86.4k+ views
Hint: According to Faraday’s law of electromagnetic induction “When the flux of magnetic field through the area bounded by two consecutive spokes changes, an emf between the axle and the rim of the wheel will produce”.
The emf is given by
\[\varepsilon = - \dfrac{{d\phi }}{{dt}}\]
Where, \[\phi = \int {\vec B.d\vec s} \] is the flux of the magnetic field through the area.
Complete step by step answer:
Given
Number of spokes = 10
Length of each spoke or radius of the wheel (r) = 0.5 m
Angular speed of the wheel = 120 rev/min = \[4\pi {\text{ rad/s}}\]
Earth’s magnetic field (\[{B_h}\]) = 0.4 G =\[0.4 \times {10^4}T\]
Consider the (A) area covered by an angle is θ.
So, \[A = \pi {r^2}\dfrac{\theta }{{2\pi }}\]
\[\therefore A = {r^2}\dfrac{\theta }{2}\]
Now, The induced emf \[\varepsilon = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(BA)}}{{dt}}\]
\[ \Rightarrow \varepsilon = - \dfrac{{Bd(A)}}{{dt}}\]……………….. (ii)
Substitute the given values in the equation (ii), we get
\[\Rightarrow \varepsilon = \dfrac{{2\pi \times 2 \times 0.4 \times {{10}^{ - 4}} \times {{(0.5)}^2}}}{2} = 6.28 \times {10^{ - 5}}V\]
\[\therefore \varepsilon = 0.628mV\]
Hence, Option (B) is the correct answer.
Note: Magnetic flux changes by change in:-
(i) Magnitude of magnetic field
(ii) Crossing Area and
(iii) Angle between magnetic field vector and area vector.
The direction of the induced magnetic field in a loop can be obtained by using an electromagnetic induction equation. If the flux increases with time, \[\dfrac{{d\phi }}{{dt}}\]is positive and ε will be negative similarly when \[\dfrac{{d\phi }}{{dt}}\]is negative ε will be positive.
The emf is given by
\[\varepsilon = - \dfrac{{d\phi }}{{dt}}\]
Where, \[\phi = \int {\vec B.d\vec s} \] is the flux of the magnetic field through the area.
Complete step by step answer:
Given
Number of spokes = 10
Length of each spoke or radius of the wheel (r) = 0.5 m
Angular speed of the wheel = 120 rev/min = \[4\pi {\text{ rad/s}}\]
Earth’s magnetic field (\[{B_h}\]) = 0.4 G =\[0.4 \times {10^4}T\]
Consider the (A) area covered by an angle is θ.
So, \[A = \pi {r^2}\dfrac{\theta }{{2\pi }}\]
\[\therefore A = {r^2}\dfrac{\theta }{2}\]
Now, The induced emf \[\varepsilon = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(BA)}}{{dt}}\]
\[ \Rightarrow \varepsilon = - \dfrac{{Bd(A)}}{{dt}}\]……………….. (ii)
Substitute the given values in the equation (ii), we get
\[\Rightarrow \varepsilon = \dfrac{{2\pi \times 2 \times 0.4 \times {{10}^{ - 4}} \times {{(0.5)}^2}}}{2} = 6.28 \times {10^{ - 5}}V\]
\[\therefore \varepsilon = 0.628mV\]
Hence, Option (B) is the correct answer.
Note: Magnetic flux changes by change in:-
(i) Magnitude of magnetic field
(ii) Crossing Area and
(iii) Angle between magnetic field vector and area vector.
The direction of the induced magnetic field in a loop can be obtained by using an electromagnetic induction equation. If the flux increases with time, \[\dfrac{{d\phi }}{{dt}}\]is positive and ε will be negative similarly when \[\dfrac{{d\phi }}{{dt}}\]is negative ε will be positive.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main