
A wheel with 10 metallic spokes each 0.5 m long rotated with a speed of 120 rpm in a plane normal to the horizontal component of earth’s magnetic field \[{B_h}\] at a place. If \[{B_h} = 0.4G\] at the place. What is the induced emf between the axle and the rim of the wheel? (\[1G = {10^{ - 4}}T\])
(A) 0 V
(B) 0.628 mV
(C) 0.628 μV
(D) 62.8 μV
Answer
220.2k+ views
Hint: According to Faraday’s law of electromagnetic induction “When the flux of magnetic field through the area bounded by two consecutive spokes changes, an emf between the axle and the rim of the wheel will produce”.
The emf is given by
\[\varepsilon = - \dfrac{{d\phi }}{{dt}}\]
Where, \[\phi = \int {\vec B.d\vec s} \] is the flux of the magnetic field through the area.
Complete step by step answer:
Given
Number of spokes = 10
Length of each spoke or radius of the wheel (r) = 0.5 m
Angular speed of the wheel = 120 rev/min = \[4\pi {\text{ rad/s}}\]
Earth’s magnetic field (\[{B_h}\]) = 0.4 G =\[0.4 \times {10^4}T\]
Consider the (A) area covered by an angle is θ.
So, \[A = \pi {r^2}\dfrac{\theta }{{2\pi }}\]
\[\therefore A = {r^2}\dfrac{\theta }{2}\]
Now, The induced emf \[\varepsilon = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(BA)}}{{dt}}\]
\[ \Rightarrow \varepsilon = - \dfrac{{Bd(A)}}{{dt}}\]……………….. (ii)
Substitute the given values in the equation (ii), we get
\[\Rightarrow \varepsilon = \dfrac{{2\pi \times 2 \times 0.4 \times {{10}^{ - 4}} \times {{(0.5)}^2}}}{2} = 6.28 \times {10^{ - 5}}V\]
\[\therefore \varepsilon = 0.628mV\]
Hence, Option (B) is the correct answer.
Note: Magnetic flux changes by change in:-
(i) Magnitude of magnetic field
(ii) Crossing Area and
(iii) Angle between magnetic field vector and area vector.
The direction of the induced magnetic field in a loop can be obtained by using an electromagnetic induction equation. If the flux increases with time, \[\dfrac{{d\phi }}{{dt}}\]is positive and ε will be negative similarly when \[\dfrac{{d\phi }}{{dt}}\]is negative ε will be positive.
The emf is given by
\[\varepsilon = - \dfrac{{d\phi }}{{dt}}\]
Where, \[\phi = \int {\vec B.d\vec s} \] is the flux of the magnetic field through the area.
Complete step by step answer:
Given
Number of spokes = 10
Length of each spoke or radius of the wheel (r) = 0.5 m
Angular speed of the wheel = 120 rev/min = \[4\pi {\text{ rad/s}}\]
Earth’s magnetic field (\[{B_h}\]) = 0.4 G =\[0.4 \times {10^4}T\]
Consider the (A) area covered by an angle is θ.
So, \[A = \pi {r^2}\dfrac{\theta }{{2\pi }}\]
\[\therefore A = {r^2}\dfrac{\theta }{2}\]
Now, The induced emf \[\varepsilon = - \dfrac{{d\phi }}{{dt}} = - \dfrac{{d(BA)}}{{dt}}\]
\[ \Rightarrow \varepsilon = - \dfrac{{Bd(A)}}{{dt}}\]……………….. (ii)
Substitute the given values in the equation (ii), we get
\[\Rightarrow \varepsilon = \dfrac{{2\pi \times 2 \times 0.4 \times {{10}^{ - 4}} \times {{(0.5)}^2}}}{2} = 6.28 \times {10^{ - 5}}V\]
\[\therefore \varepsilon = 0.628mV\]
Hence, Option (B) is the correct answer.
Note: Magnetic flux changes by change in:-
(i) Magnitude of magnetic field
(ii) Crossing Area and
(iii) Angle between magnetic field vector and area vector.
The direction of the induced magnetic field in a loop can be obtained by using an electromagnetic induction equation. If the flux increases with time, \[\dfrac{{d\phi }}{{dt}}\]is positive and ε will be negative similarly when \[\dfrac{{d\phi }}{{dt}}\]is negative ε will be positive.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Young’s Double Slit Experiment Derivation Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

