
A wave travelling along a string is described by, y(x,t)=0.005sin(80.0x-3.0t), in which the numerical constants are in SI units \[(0.005{\rm{ m, 80}}{\rm{.0 rad }}{{\rm{m}}^{ - 1}}{\rm{ and 3}}{\rm{.0 rad }}{{\rm{s}}^{ - 1}})\]. Calculate: (a) the amplitude (b) the wavelength (c) the period and frequency of the wave. Also, calculate the displacement y of the wave at a distance x = 30.0 cm and time t = 20 s?
Answer
164.4k+ views
Hint: To solve this question we can compare the given travelling wave equation with the general form of the equation. After comparing we get the values for the related terms of the equation.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Charging and Discharging of Capacitor

A body of mass 3Kg moving with a velocity of 4ms towards class 11 physics JEE_Main

Class 11 JEE Main Physics Mock Test 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
JEE Advanced 2025 Notes

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
