
A wave travelling along a string is described by, y(x,t)=0.005sin(80.0x-3.0t), in which the numerical constants are in SI units \[(0.005{\rm{ m, 80}}{\rm{.0 rad }}{{\rm{m}}^{ - 1}}{\rm{ and 3}}{\rm{.0 rad }}{{\rm{s}}^{ - 1}})\]. Calculate: (a) the amplitude (b) the wavelength (c) the period and frequency of the wave. Also, calculate the displacement y of the wave at a distance x = 30.0 cm and time t = 20 s?
Answer
232.8k+ views
Hint: To solve this question we can compare the given travelling wave equation with the general form of the equation. After comparing we get the values for the related terms of the equation.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Formula used:
The general form of the sinusoidal wave is given as,
\[y(x,t) = A\sin (kx - \omega t)\]
Where A is the amplitude
k is the wavenumber
\[\omega \] is the angular frequency
x is the displacement
t is the time taken
The formula for angular frequency is given as,
\[\omega = 2\pi f\]
Where f is an ordinary frequency
Complete answer:
Travelling wave equation is given as
y(x,t)=0.005sin(80.0x-3.0t)
As the general equation of wave is
\[y(x,t) = A\sin (kx - \omega t)\]
Now comparing both the equations, we get
k=80.0, \[\omega = 3\]
(a) Amplitude, A=0.005 m = 5 mm
(b) As we know that wavelength, \[\lambda = \dfrac{{2\pi }}{k}\]
So, \[\lambda = \dfrac{{2\pi }}{{80.0}} = \dfrac{\pi }{{40}}m\]
=7.85 cm
(c)As we know \[\omega = 2\pi f\]
So, \[f = \dfrac{3}{{2\pi }} = 0.48Hz\]
Also, we know that, \[T = \dfrac{1}{f}\]
So, \[T = \dfrac{{2\pi }}{3} = 2.09\sec \]
At a distance x = 30.0 cm (or 0.3 m) and time t = 20 s,
Putting the given values in the general equation, we have
\[y(x,t) = 0.005\sin (80 \times 0.3 - 3 \times 20)\]
\[ = 0.005\sin ( - 36rad)\]
\[ = 4.95mm{\rm{ }} \approx 5mm\]
Note:A travelling wave is defined as the wave that is moving in a space. A wave which is travelling in the positive direction of the x axis can be represented by the wave equation \[y(x,t) = A\sin (kx - \omega t)\]. Here A is the amplitude and k is the propagation constant.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

