
A wave of frequency \[{\rm{500Hz}}\] has a velocity of \[{\rm{360m}}{{\rm{s}}^{{\rm{ - 1}}}}\]. Calculate the distance between two points that are \[{60^0}\] out of phase.
A. 12 cm
B. 18 cm
C. 17 cm
D. 25 cm
Answer
232.8k+ views
Hint:To proceed with the problem, let’s see what the path difference and phase difference say. The distance travelled by the two waves from their respective sources to a given point on the pattern is known as path difference. The phase difference is defined as the difference in phase angle between two waves. Now we can solve the problem by considering the definitions.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Formula used:
The formula to find the wavelength is,
\[\lambda = \dfrac{v}{f}\]
Where, \[v\] is the velocity of the wave and \[f\] is the frequency of the wave.
To find the path difference, the formula is given by,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
Where, \[\Delta x\] is the path difference, \[\lambda \] is the wavelength and \[\Delta \varphi \] is the phase difference.
Complete step by step solution:
To find the path difference, first, we need to find the
\[\lambda = \dfrac{v}{f}\]
\[ \Rightarrow \lambda = \dfrac{{360}}{{500}}\]
By data we have \[{\rm{v = 360m}}{{\rm{s}}^{{\rm{ - 1}}}}\] and \[f = 500Hz\].
\[\lambda = 0.72\,m\]
Now let’s find the path difference or the distance between the two points from the above formula,
\[\Delta x = \dfrac{\lambda }{{2\pi }}\Delta \varphi \]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{{2\pi }} \times \dfrac{\pi }{3}\]
By data, \[\Delta \varphi = {60^0} = \dfrac{\pi }{3}\]
\[ \Rightarrow \Delta x = \dfrac{\lambda }{6}\]
Now substitute the value of \[\lambda \]in the above equation we get,
\[\Delta x = \dfrac{{0.72}}{6}\]
\[ \Rightarrow \Delta x = 0.12\,m\]
Convert the above value from m to cm we get,
\[\therefore \Delta x = 12\,cm\]
Therefore, the distance between the two points is 12 cm.
Hence, option A is the correct answer.
Note:Now will see on what factors the frequency of a wave depends. As we know that the frequency is the number of cycles per second hence it depends only on the frequency of the source.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

