
A vertical hanging bar of length $l$ and mass $m$ per unit length carries a load of mass M at lower end, its upper end clamped at a rigid support. The tensile stress a distance $x$ from support is (A-area of cross-section of bar)
A) $\dfrac{{Mg + mg(1 - x)}}{A}$
B) $\dfrac{{Mg}}{A}$
C) $\dfrac{{Mg + mgl}}{A}$
D) $\dfrac{{(M + M)gx}}{{Al}}$
Answer
137.1k+ views
Hint: In order to find the correct solution of the given question, we need to find the value of total force acting at a distance $x$from the support. After that we need to use the formula for the tensile stress which relates the tensile stress with total force and area on which the force is acting. Then we can finally conclude with the correct solution of the given question.
Complete step by step solution:
First of all we need to find the total forces acting on the system.
The force acting on the body of mass$m$at distance of \[(l - x)\] can be written as, ${F_1} = m(l - x)g$
and the force acting on the body of mass $M$ can be written as, ${F_2} = Mg$
Now, we need to find the total force acting on the system.
So, we need to add both the forces acting on the given system.
Therefore, we can write it as,
$F = {F_1} + {F_2}$
$ \Rightarrow F = m(l - x)g + Mg$……………….. (i)
Now, we know that the tensile stress of a body is the ratio of the force acting on the body per unit area.
Mathematically, we can write it as, $\sigma = \dfrac{F}{A}$
From equation (i), we can get,
$\Rightarrow \sigma = \dfrac{{m(l - x)g + Mg}}{A}$
Hence, option (A), i.e. $\dfrac{{Mg + m(l - x)g}}{A}$ is the correct choice of the given question.
Note: We define tensile stress as the force applied to a cross-sectional area. Mathematically, it is represented as,$\sigma = \dfrac{F}{A}$. We should not confuse tensile stress with tensile strength. The tensile strength of a body is the amount of force required to break a cross-sectional area. Mathematically, it is represented by, $S = \dfrac{P}{A}$.
Complete step by step solution:
First of all we need to find the total forces acting on the system.
The force acting on the body of mass$m$at distance of \[(l - x)\] can be written as, ${F_1} = m(l - x)g$
and the force acting on the body of mass $M$ can be written as, ${F_2} = Mg$
Now, we need to find the total force acting on the system.
So, we need to add both the forces acting on the given system.
Therefore, we can write it as,
$F = {F_1} + {F_2}$
$ \Rightarrow F = m(l - x)g + Mg$……………….. (i)
Now, we know that the tensile stress of a body is the ratio of the force acting on the body per unit area.
Mathematically, we can write it as, $\sigma = \dfrac{F}{A}$
From equation (i), we can get,
$\Rightarrow \sigma = \dfrac{{m(l - x)g + Mg}}{A}$
Hence, option (A), i.e. $\dfrac{{Mg + m(l - x)g}}{A}$ is the correct choice of the given question.
Note: We define tensile stress as the force applied to a cross-sectional area. Mathematically, it is represented as,$\sigma = \dfrac{F}{A}$. We should not confuse tensile stress with tensile strength. The tensile strength of a body is the amount of force required to break a cross-sectional area. Mathematically, it is represented by, $S = \dfrac{P}{A}$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
