
: A stone is released from the top of the tower. it covers 24.5 m distance in the last second of its journey. The time, for which stone is air is
A. 3 sec
B. 9 sec
C. 1 sec
D. 5 sec
Answer
154.2k+ views
Hint: for these types of questions, we use the Newton’s equation of motion i.e. $s = ut + \dfrac{1}{2}a{t^2}$, here firstly u = 0 then we can find the value of s. after that it is given that in the last second of the journey i.e. t = t-1, so replace the value of t by t-1 in the value of s and then equate it with 24.5 m, we will get the required result.
Step by step solution:
As, here it is given that the stone is released from the top of the tower, it means initial velocity is zero, and let the stone travel the distance s from the top.
Using Newton’s equation of motion is
$s = ut + \dfrac{1}{2}a{t^2}$
As, u = 0 and as stone is falling under the gravity then take a = g, we get
$ \Rightarrow s = \dfrac{1}{2}g{t^2}$…………. (1)
As, $g = 9.8m{s^{ - 2}}$ then
$ \Rightarrow s = 4.9{t^2}$ …………………. (2)
Now, as it is given that the distance travel by the stone in last second i.e. when t = t-1 seconds is 24.5m, therefore we can substitute the t = t-1 in equation (2), we get
$ \Rightarrow s = 4.9{\left( {t - 1} \right)^2}$ …………………. (3)
Subtracting equation (3) from equation (2), and equate it to 24.5 m, we get
$ \Rightarrow 4.9{t^2} - 4.9{\left( {t - 1} \right)^2} = 24.5$
On solving the above equation, we get
$ \Rightarrow {t^2} - {\left( {t - 1} \right)^2} = 5$
$ \Rightarrow \left( {t - t + 1} \right)\left( {t + t - 1} \right) = 5$
$ \Rightarrow 2t - 1 = 5$
$ \Rightarrow t = 3\sec $
Hence, the time for which stone will remain in air is 3 second
Therefore, option A is correct.
Note: In this equation it must be noticed that when the object is released from the top of the tower it means its initial velocity is equal to zero. After substituting the value we will get the equation.
We have three Newton’s equation of motion i.e. $v = u + at$, ${v^2} - {u^2} = 2as$, $s = ut + \dfrac{1}{2}a{t^2}$
Which equation we have to use this will depend upon the conditions given in the question.
Step by step solution:
As, here it is given that the stone is released from the top of the tower, it means initial velocity is zero, and let the stone travel the distance s from the top.
Using Newton’s equation of motion is
$s = ut + \dfrac{1}{2}a{t^2}$
As, u = 0 and as stone is falling under the gravity then take a = g, we get
$ \Rightarrow s = \dfrac{1}{2}g{t^2}$…………. (1)
As, $g = 9.8m{s^{ - 2}}$ then
$ \Rightarrow s = 4.9{t^2}$ …………………. (2)
Now, as it is given that the distance travel by the stone in last second i.e. when t = t-1 seconds is 24.5m, therefore we can substitute the t = t-1 in equation (2), we get
$ \Rightarrow s = 4.9{\left( {t - 1} \right)^2}$ …………………. (3)
Subtracting equation (3) from equation (2), and equate it to 24.5 m, we get
$ \Rightarrow 4.9{t^2} - 4.9{\left( {t - 1} \right)^2} = 24.5$
On solving the above equation, we get
$ \Rightarrow {t^2} - {\left( {t - 1} \right)^2} = 5$
$ \Rightarrow \left( {t - t + 1} \right)\left( {t + t - 1} \right) = 5$
$ \Rightarrow 2t - 1 = 5$
$ \Rightarrow t = 3\sec $
Hence, the time for which stone will remain in air is 3 second
Therefore, option A is correct.
Note: In this equation it must be noticed that when the object is released from the top of the tower it means its initial velocity is equal to zero. After substituting the value we will get the equation.
We have three Newton’s equation of motion i.e. $v = u + at$, ${v^2} - {u^2} = 2as$, $s = ut + \dfrac{1}{2}a{t^2}$
Which equation we have to use this will depend upon the conditions given in the question.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
If the unit of power is 1Kilo Watt the length is 100m class 11 physics JEE_Main

Which of the following statements is correct if the class 11 physics JEE_Main

The quantity of heat required to heat one mole of a class 11 physics JEE_Main

IIIT JEE Main Cutoff 2024

Photoelectric Effect and Stopping Potential with Work Function and Derivation for JEE

Newton’s Laws of Motion: Three Laws of Motion Explanation with Examples

Other Pages
JEE Advanced 2025 Revision Notes for Mechanics

Ideal and Non-Ideal Solutions Raoult's Law - JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

A boy wants to throw a ball from a point A so as to class 11 physics JEE_Main

List of Fastest Century In IPL - Cricket League and FAQs

NEET 2025: All Major Changes in Application Process, Pattern and More
