
: A stone is released from the top of the tower. it covers 24.5 m distance in the last second of its journey. The time, for which stone is air is
A. 3 sec
B. 9 sec
C. 1 sec
D. 5 sec
Answer
139.8k+ views
Hint: for these types of questions, we use the Newton’s equation of motion i.e. , here firstly u = 0 then we can find the value of s. after that it is given that in the last second of the journey i.e. t = t-1, so replace the value of t by t-1 in the value of s and then equate it with 24.5 m, we will get the required result.
Step by step solution:
As, here it is given that the stone is released from the top of the tower, it means initial velocity is zero, and let the stone travel the distance s from the top.
Using Newton’s equation of motion is
As, u = 0 and as stone is falling under the gravity then take a = g, we get
…………. (1)
As, then
…………………. (2)
Now, as it is given that the distance travel by the stone in last second i.e. when t = t-1 seconds is 24.5m, therefore we can substitute the t = t-1 in equation (2), we get
…………………. (3)
Subtracting equation (3) from equation (2), and equate it to 24.5 m, we get
On solving the above equation, we get
Hence, the time for which stone will remain in air is 3 second
Therefore, option A is correct.
Note: In this equation it must be noticed that when the object is released from the top of the tower it means its initial velocity is equal to zero. After substituting the value we will get the equation.
We have three Newton’s equation of motion i.e. , ,
Which equation we have to use this will depend upon the conditions given in the question.
Step by step solution:
As, here it is given that the stone is released from the top of the tower, it means initial velocity is zero, and let the stone travel the distance s from the top.
Using Newton’s equation of motion is
As, u = 0 and as stone is falling under the gravity then take a = g, we get
As,
Now, as it is given that the distance travel by the stone in last second i.e. when t = t-1 seconds is 24.5m, therefore we can substitute the t = t-1 in equation (2), we get
Subtracting equation (3) from equation (2), and equate it to 24.5 m, we get
On solving the above equation, we get
Hence, the time for which stone will remain in air is 3 second
Therefore, option A is correct.
Note: In this equation it must be noticed that when the object is released from the top of the tower it means its initial velocity is equal to zero. After substituting the value we will get the equation.
We have three Newton’s equation of motion i.e.
Which equation we have to use this will depend upon the conditions given in the question.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
