
: A stone is released from the top of the tower. it covers 24.5 m distance in the last second of its journey. The time, for which stone is air is
A. 3 sec
B. 9 sec
C. 1 sec
D. 5 sec
Answer
149.1k+ views
Hint: for these types of questions, we use the Newton’s equation of motion i.e. $s = ut + \dfrac{1}{2}a{t^2}$, here firstly u = 0 then we can find the value of s. after that it is given that in the last second of the journey i.e. t = t-1, so replace the value of t by t-1 in the value of s and then equate it with 24.5 m, we will get the required result.
Step by step solution:
As, here it is given that the stone is released from the top of the tower, it means initial velocity is zero, and let the stone travel the distance s from the top.
Using Newton’s equation of motion is
$s = ut + \dfrac{1}{2}a{t^2}$
As, u = 0 and as stone is falling under the gravity then take a = g, we get
$ \Rightarrow s = \dfrac{1}{2}g{t^2}$…………. (1)
As, $g = 9.8m{s^{ - 2}}$ then
$ \Rightarrow s = 4.9{t^2}$ …………………. (2)
Now, as it is given that the distance travel by the stone in last second i.e. when t = t-1 seconds is 24.5m, therefore we can substitute the t = t-1 in equation (2), we get
$ \Rightarrow s = 4.9{\left( {t - 1} \right)^2}$ …………………. (3)
Subtracting equation (3) from equation (2), and equate it to 24.5 m, we get
$ \Rightarrow 4.9{t^2} - 4.9{\left( {t - 1} \right)^2} = 24.5$
On solving the above equation, we get
$ \Rightarrow {t^2} - {\left( {t - 1} \right)^2} = 5$
$ \Rightarrow \left( {t - t + 1} \right)\left( {t + t - 1} \right) = 5$
$ \Rightarrow 2t - 1 = 5$
$ \Rightarrow t = 3\sec $
Hence, the time for which stone will remain in air is 3 second
Therefore, option A is correct.
Note: In this equation it must be noticed that when the object is released from the top of the tower it means its initial velocity is equal to zero. After substituting the value we will get the equation.
We have three Newton’s equation of motion i.e. $v = u + at$, ${v^2} - {u^2} = 2as$, $s = ut + \dfrac{1}{2}a{t^2}$
Which equation we have to use this will depend upon the conditions given in the question.
Step by step solution:
As, here it is given that the stone is released from the top of the tower, it means initial velocity is zero, and let the stone travel the distance s from the top.
Using Newton’s equation of motion is
$s = ut + \dfrac{1}{2}a{t^2}$
As, u = 0 and as stone is falling under the gravity then take a = g, we get
$ \Rightarrow s = \dfrac{1}{2}g{t^2}$…………. (1)
As, $g = 9.8m{s^{ - 2}}$ then
$ \Rightarrow s = 4.9{t^2}$ …………………. (2)
Now, as it is given that the distance travel by the stone in last second i.e. when t = t-1 seconds is 24.5m, therefore we can substitute the t = t-1 in equation (2), we get
$ \Rightarrow s = 4.9{\left( {t - 1} \right)^2}$ …………………. (3)
Subtracting equation (3) from equation (2), and equate it to 24.5 m, we get
$ \Rightarrow 4.9{t^2} - 4.9{\left( {t - 1} \right)^2} = 24.5$
On solving the above equation, we get
$ \Rightarrow {t^2} - {\left( {t - 1} \right)^2} = 5$
$ \Rightarrow \left( {t - t + 1} \right)\left( {t + t - 1} \right) = 5$
$ \Rightarrow 2t - 1 = 5$
$ \Rightarrow t = 3\sec $
Hence, the time for which stone will remain in air is 3 second
Therefore, option A is correct.
Note: In this equation it must be noticed that when the object is released from the top of the tower it means its initial velocity is equal to zero. After substituting the value we will get the equation.
We have three Newton’s equation of motion i.e. $v = u + at$, ${v^2} - {u^2} = 2as$, $s = ut + \dfrac{1}{2}a{t^2}$
Which equation we have to use this will depend upon the conditions given in the question.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Uniform Acceleration

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
