
A star which appears blue will be
A) much hotter than the Sun
B) colder than the Sun
C) as hot as the Sun
D) at $ - {273^ \circ }C$
Answer
225k+ views
Hint: Energy is inversely proportional to the wavelength and is directly proportional to the temperature of the body. So just check the relation and compare temperature. The light colour with less wavelength will have more temperature.
Complete step by step answer:
Explanation of the symbols used:
$h$ = Planck’s constant
$c$ = speed of light
${E_{star}}$ = energy per unit area (flux) radiated by the blue star
${E_{sun}}$ = energy per unit area (flux) radiated by the Sun
$\sigma $ = Stefan-Boltzmann constant
$\varepsilon $ = emissivity of the body
${T_{star}}$ = temperature of the blue star
${T_{sun}}$ = temperature of the Sun
We know that energy $E$ is inversely proportional to the wavelength $\lambda $ according to the relation
$E = \dfrac{{hc}}{\lambda }$.
Hence as we know the wavelength of blue light is less than the wavelength of yellow or red light (colour of the Sun). The energy of the blue star is therefore more than the energy of the Sun (since it is inversely proportional).
Therefore,
${E_{star}} > {E_{sun}}$
Hence according to Stefan-Boltzmann Law we know that $E = \sigma \varepsilon {T^4}$
$\sigma \varepsilon T_{star}^4 > \sigma \varepsilon T_{sun}^4$
${T_{star}} > T_{sun}^{}$
Therefore, the temperature of the star will be greater than the temperature of the Sun, i.e., the star which appears blue will be much hotter than the Sun.
Hence the correct answer is option A.
Note: The comparison can be made by Wien’s displacement law as well which directly relates the wavelength of emitted radiation and temperature of a body as
$\lambda T$ = constant
Which means since blue light has less wavelength as compared to Yellow or Orange light, it will have more temperature, i.e., it will be hotter. This method can be used since it is a shorter method but our solution that we have discussed is more fundamental in nature and hence generally recommended.
Complete step by step answer:
Explanation of the symbols used:
$h$ = Planck’s constant
$c$ = speed of light
${E_{star}}$ = energy per unit area (flux) radiated by the blue star
${E_{sun}}$ = energy per unit area (flux) radiated by the Sun
$\sigma $ = Stefan-Boltzmann constant
$\varepsilon $ = emissivity of the body
${T_{star}}$ = temperature of the blue star
${T_{sun}}$ = temperature of the Sun
We know that energy $E$ is inversely proportional to the wavelength $\lambda $ according to the relation
$E = \dfrac{{hc}}{\lambda }$.
Hence as we know the wavelength of blue light is less than the wavelength of yellow or red light (colour of the Sun). The energy of the blue star is therefore more than the energy of the Sun (since it is inversely proportional).
Therefore,
${E_{star}} > {E_{sun}}$
Hence according to Stefan-Boltzmann Law we know that $E = \sigma \varepsilon {T^4}$
$\sigma \varepsilon T_{star}^4 > \sigma \varepsilon T_{sun}^4$
${T_{star}} > T_{sun}^{}$
Therefore, the temperature of the star will be greater than the temperature of the Sun, i.e., the star which appears blue will be much hotter than the Sun.
Hence the correct answer is option A.
Note: The comparison can be made by Wien’s displacement law as well which directly relates the wavelength of emitted radiation and temperature of a body as
$\lambda T$ = constant
Which means since blue light has less wavelength as compared to Yellow or Orange light, it will have more temperature, i.e., it will be hotter. This method can be used since it is a shorter method but our solution that we have discussed is more fundamental in nature and hence generally recommended.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

