
A star which appears blue will be
A) much hotter than the Sun
B) colder than the Sun
C) as hot as the Sun
D) at
Answer
153k+ views
1 likes
Hint: Energy is inversely proportional to the wavelength and is directly proportional to the temperature of the body. So just check the relation and compare temperature. The light colour with less wavelength will have more temperature.
Complete step by step answer:
Explanation of the symbols used:
= Planck’s constant
= speed of light
= energy per unit area (flux) radiated by the blue star
= energy per unit area (flux) radiated by the Sun
= Stefan-Boltzmann constant
= emissivity of the body
= temperature of the blue star
= temperature of the Sun
We know that energy is inversely proportional to the wavelength according to the relation
.
Hence as we know the wavelength of blue light is less than the wavelength of yellow or red light (colour of the Sun). The energy of the blue star is therefore more than the energy of the Sun (since it is inversely proportional).
Therefore,
Hence according to Stefan-Boltzmann Law we know that
Therefore, the temperature of the star will be greater than the temperature of the Sun, i.e., the star which appears blue will be much hotter than the Sun.
Hence the correct answer is option A.
Note: The comparison can be made by Wien’s displacement law as well which directly relates the wavelength of emitted radiation and temperature of a body as
= constant
Which means since blue light has less wavelength as compared to Yellow or Orange light, it will have more temperature, i.e., it will be hotter. This method can be used since it is a shorter method but our solution that we have discussed is more fundamental in nature and hence generally recommended.
Complete step by step answer:
Explanation of the symbols used:
We know that energy
Hence as we know the wavelength of blue light is less than the wavelength of yellow or red light (colour of the Sun). The energy of the blue star is therefore more than the energy of the Sun (since it is inversely proportional).
Therefore,
Hence according to Stefan-Boltzmann Law we know that
Therefore, the temperature of the star will be greater than the temperature of the Sun, i.e., the star which appears blue will be much hotter than the Sun.
Hence the correct answer is option A.
Note: The comparison can be made by Wien’s displacement law as well which directly relates the wavelength of emitted radiation and temperature of a body as
Which means since blue light has less wavelength as compared to Yellow or Orange light, it will have more temperature, i.e., it will be hotter. This method can be used since it is a shorter method but our solution that we have discussed is more fundamental in nature and hence generally recommended.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
