
A nucleus of mass $m + \Delta m$ is at rest and decays into two daughter nuclei of equal mass each
$\dfrac{M}{2}$. The speed of light is $c$. The speed of daughter nuclei is
a. $c\dfrac{{\Delta m}}{{M + \Delta m}}$
b. $c\sqrt {\dfrac{{2\Delta m}}{M}} $
C. $c\sqrt {\dfrac{{\Delta m}}{M}} $
d. $c\sqrt {\dfrac{{\Delta m}}{{M + \Delta m}}} $
Answer
225.3k+ views
Hint: In this question, first use the law of conservation of momentum and then find the velocity of the daughter nuclei is the same. Then find the total kinetic energy of the two daughter nuclei and mass defect and then find the velocity of the two daughter nuclei.
Complete step by step answer:
A nucleus decays into two parts and the mass of each nucleus is $\dfrac{M}{2}$. The mass of the parent nucleus is $M + \Delta m$ .
Let us assume that the speed of daughter nuclei is ${V_1}$ and ${V_2}$ respectively.
Hence conservation of momentum, $\dfrac{M}{2}{V_1} = \dfrac{M}{2}{V_2} \Rightarrow {V_1} = {V_2}$
Now the mass defect is $M + \Delta m - \left( {\dfrac{M}{2} + \dfrac{M}{2}} \right) = \Delta m$
As the product of mass defect and the square of the speed of light is the total kinetic energy.
So, the kinetic energy of the two daughter nuclei is ${E_1} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2$ and ${E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
Hence the total kinetic energy of the two daughter nuclei is ${E_1} + {E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2 + \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
As the velocity of the two daughter nuclei is same ${V_1} = {V_2}$
Thus, the total kinetic energy of the two daughter nuclei is $\dfrac{M}{2}{V_1}^2$ .
$ \Rightarrow \Delta m{c^2} = \dfrac{M}{2}{V_1}^2$
$\therefore {V_1} = c\sqrt {\dfrac{{2\Delta m}}{M}} $
The speed of the two daughter nuclei is $c\sqrt {\dfrac{{2\Delta m}}{M}} $.
Hence option (b) is the correct answer.
Note: As we know that the law of conservation of momentum states that in an isolated system, when the two objects collide with each other the total momentum of two objects before the collision is equal to the total momentum after the collision. Momentum is neither destroyed nor created; it transforms into one form to another.
Complete step by step answer:
A nucleus decays into two parts and the mass of each nucleus is $\dfrac{M}{2}$. The mass of the parent nucleus is $M + \Delta m$ .
Let us assume that the speed of daughter nuclei is ${V_1}$ and ${V_2}$ respectively.
Hence conservation of momentum, $\dfrac{M}{2}{V_1} = \dfrac{M}{2}{V_2} \Rightarrow {V_1} = {V_2}$
Now the mass defect is $M + \Delta m - \left( {\dfrac{M}{2} + \dfrac{M}{2}} \right) = \Delta m$
As the product of mass defect and the square of the speed of light is the total kinetic energy.
So, the kinetic energy of the two daughter nuclei is ${E_1} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2$ and ${E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
Hence the total kinetic energy of the two daughter nuclei is ${E_1} + {E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2 + \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
As the velocity of the two daughter nuclei is same ${V_1} = {V_2}$
Thus, the total kinetic energy of the two daughter nuclei is $\dfrac{M}{2}{V_1}^2$ .
$ \Rightarrow \Delta m{c^2} = \dfrac{M}{2}{V_1}^2$
$\therefore {V_1} = c\sqrt {\dfrac{{2\Delta m}}{M}} $
The speed of the two daughter nuclei is $c\sqrt {\dfrac{{2\Delta m}}{M}} $.
Hence option (b) is the correct answer.
Note: As we know that the law of conservation of momentum states that in an isolated system, when the two objects collide with each other the total momentum of two objects before the collision is equal to the total momentum after the collision. Momentum is neither destroyed nor created; it transforms into one form to another.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

