
A nucleus of mass $m + \Delta m$ is at rest and decays into two daughter nuclei of equal mass each
$\dfrac{M}{2}$. The speed of light is $c$. The speed of daughter nuclei is
a. $c\dfrac{{\Delta m}}{{M + \Delta m}}$
b. $c\sqrt {\dfrac{{2\Delta m}}{M}} $
C. $c\sqrt {\dfrac{{\Delta m}}{M}} $
d. $c\sqrt {\dfrac{{\Delta m}}{{M + \Delta m}}} $
Answer
218.4k+ views
Hint: In this question, first use the law of conservation of momentum and then find the velocity of the daughter nuclei is the same. Then find the total kinetic energy of the two daughter nuclei and mass defect and then find the velocity of the two daughter nuclei.
Complete step by step answer:
A nucleus decays into two parts and the mass of each nucleus is $\dfrac{M}{2}$. The mass of the parent nucleus is $M + \Delta m$ .
Let us assume that the speed of daughter nuclei is ${V_1}$ and ${V_2}$ respectively.
Hence conservation of momentum, $\dfrac{M}{2}{V_1} = \dfrac{M}{2}{V_2} \Rightarrow {V_1} = {V_2}$
Now the mass defect is $M + \Delta m - \left( {\dfrac{M}{2} + \dfrac{M}{2}} \right) = \Delta m$
As the product of mass defect and the square of the speed of light is the total kinetic energy.
So, the kinetic energy of the two daughter nuclei is ${E_1} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2$ and ${E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
Hence the total kinetic energy of the two daughter nuclei is ${E_1} + {E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2 + \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
As the velocity of the two daughter nuclei is same ${V_1} = {V_2}$
Thus, the total kinetic energy of the two daughter nuclei is $\dfrac{M}{2}{V_1}^2$ .
$ \Rightarrow \Delta m{c^2} = \dfrac{M}{2}{V_1}^2$
$\therefore {V_1} = c\sqrt {\dfrac{{2\Delta m}}{M}} $
The speed of the two daughter nuclei is $c\sqrt {\dfrac{{2\Delta m}}{M}} $.
Hence option (b) is the correct answer.
Note: As we know that the law of conservation of momentum states that in an isolated system, when the two objects collide with each other the total momentum of two objects before the collision is equal to the total momentum after the collision. Momentum is neither destroyed nor created; it transforms into one form to another.
Complete step by step answer:
A nucleus decays into two parts and the mass of each nucleus is $\dfrac{M}{2}$. The mass of the parent nucleus is $M + \Delta m$ .
Let us assume that the speed of daughter nuclei is ${V_1}$ and ${V_2}$ respectively.
Hence conservation of momentum, $\dfrac{M}{2}{V_1} = \dfrac{M}{2}{V_2} \Rightarrow {V_1} = {V_2}$
Now the mass defect is $M + \Delta m - \left( {\dfrac{M}{2} + \dfrac{M}{2}} \right) = \Delta m$
As the product of mass defect and the square of the speed of light is the total kinetic energy.
So, the kinetic energy of the two daughter nuclei is ${E_1} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2$ and ${E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
Hence the total kinetic energy of the two daughter nuclei is ${E_1} + {E_2} = \dfrac{1}{2}.\dfrac{M}{2}.{V_1}^2 + \dfrac{1}{2}.\dfrac{M}{2}.{V_2}^2$
As the velocity of the two daughter nuclei is same ${V_1} = {V_2}$
Thus, the total kinetic energy of the two daughter nuclei is $\dfrac{M}{2}{V_1}^2$ .
$ \Rightarrow \Delta m{c^2} = \dfrac{M}{2}{V_1}^2$
$\therefore {V_1} = c\sqrt {\dfrac{{2\Delta m}}{M}} $
The speed of the two daughter nuclei is $c\sqrt {\dfrac{{2\Delta m}}{M}} $.
Hence option (b) is the correct answer.
Note: As we know that the law of conservation of momentum states that in an isolated system, when the two objects collide with each other the total momentum of two objects before the collision is equal to the total momentum after the collision. Momentum is neither destroyed nor created; it transforms into one form to another.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

