
A spring of constant $5 \times {10^3}\,N{m^{ - 1}}$ is stretched initially by $5\,cm$ from the unstretched position. Find the work required to stretch it further by another $5\,cm$.
A) $6.25\,Nm$
B) $12.5\,Nm$
C) $18.75\,Nm$
D) $25.00\,Nm$
Answer
140.1k+ views
Hint: Work done in stretching a spring is stored as the elastic potential energy given by the equation,
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore,
$W = {U_f} - {U_i}$
${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Where ${x_i}$ is the initial displacement.
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Where ${x_f}$ is the final displacement.
Complete step by step solution:
Work done in stretching a spring is stored as the elastic potential energy given by the equation,
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
This potential energy can be said as the energy due to the deformation of the spring
Given,
Initial displacement,
$
{x_i} = 5\,cm \\
\Rightarrow 5 \times {10^{ - 2}}\,m \\
\Rightarrow 0.05\,m \\
$
Final displacement,
$
\Rightarrow {x_f} = 0.05\, + 0.05 \\
\Rightarrow 0.1\,m \\
$
Value of spring constant, $k = 5 \times {10^3}\,N{m^{ - 1}}$
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore, the work required to stretch it further by another $5\,cm$ is the change in initial potential energy and final potential energy.
$W = {U_f} - {U_i}$ ………… (1)
Where ${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Substituting the given values, we get
$
{U_i} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.05} \right)^2} = 6.25\,Nm \\
$
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Substituting the given values, we get
$
{U_f} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.1} \right)^2} = 25\,Nm \\
$
Now substitute the initial and final energies in equation (1).
$
W = {U_f} - {U_i} \\
\Rightarrow 25\,Nm - 6.5\,Nm \\
\Rightarrow 18.5\,Nm \\
$
Therefore, the work required to stretch it further by another $5\,cm$ is $18.5\,Nm$.
So, the answer is option C.
Note: Here, while substituting for the value of displacement in the final potential energy remember to substitute the value $0.1\,m$. The spring was already stretched by $0.05\,m$ and we need to find the work done when it is further stretched by $0.05\,m$.So the final displacement will be $0.05\,m + 0.05\,m = 0.1\,m$
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore,
$W = {U_f} - {U_i}$
${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Where ${x_i}$ is the initial displacement.
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Where ${x_f}$ is the final displacement.
Complete step by step solution:
Work done in stretching a spring is stored as the elastic potential energy given by the equation,
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
This potential energy can be said as the energy due to the deformation of the spring
Given,
Initial displacement,
$
{x_i} = 5\,cm \\
\Rightarrow 5 \times {10^{ - 2}}\,m \\
\Rightarrow 0.05\,m \\
$
Final displacement,
$
\Rightarrow {x_f} = 0.05\, + 0.05 \\
\Rightarrow 0.1\,m \\
$
Value of spring constant, $k = 5 \times {10^3}\,N{m^{ - 1}}$
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore, the work required to stretch it further by another $5\,cm$ is the change in initial potential energy and final potential energy.
$W = {U_f} - {U_i}$ ………… (1)
Where ${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Substituting the given values, we get
$
{U_i} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.05} \right)^2} = 6.25\,Nm \\
$
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Substituting the given values, we get
$
{U_f} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.1} \right)^2} = 25\,Nm \\
$
Now substitute the initial and final energies in equation (1).
$
W = {U_f} - {U_i} \\
\Rightarrow 25\,Nm - 6.5\,Nm \\
\Rightarrow 18.5\,Nm \\
$
Therefore, the work required to stretch it further by another $5\,cm$ is $18.5\,Nm$.
So, the answer is option C.
Note: Here, while substituting for the value of displacement in the final potential energy remember to substitute the value $0.1\,m$. The spring was already stretched by $0.05\,m$ and we need to find the work done when it is further stretched by $0.05\,m$.So the final displacement will be $0.05\,m + 0.05\,m = 0.1\,m$
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
