
A spring of constant $5 \times {10^3}\,N{m^{ - 1}}$ is stretched initially by $5\,cm$ from the unstretched position. Find the work required to stretch it further by another $5\,cm$.
A) $6.25\,Nm$
B) $12.5\,Nm$
C) $18.75\,Nm$
D) $25.00\,Nm$
Answer
233.1k+ views
Hint: Work done in stretching a spring is stored as the elastic potential energy given by the equation,
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore,
$W = {U_f} - {U_i}$
${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Where ${x_i}$ is the initial displacement.
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Where ${x_f}$ is the final displacement.
Complete step by step solution:
Work done in stretching a spring is stored as the elastic potential energy given by the equation,
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
This potential energy can be said as the energy due to the deformation of the spring
Given,
Initial displacement,
$
{x_i} = 5\,cm \\
\Rightarrow 5 \times {10^{ - 2}}\,m \\
\Rightarrow 0.05\,m \\
$
Final displacement,
$
\Rightarrow {x_f} = 0.05\, + 0.05 \\
\Rightarrow 0.1\,m \\
$
Value of spring constant, $k = 5 \times {10^3}\,N{m^{ - 1}}$
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore, the work required to stretch it further by another $5\,cm$ is the change in initial potential energy and final potential energy.
$W = {U_f} - {U_i}$ ………… (1)
Where ${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Substituting the given values, we get
$
{U_i} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.05} \right)^2} = 6.25\,Nm \\
$
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Substituting the given values, we get
$
{U_f} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.1} \right)^2} = 25\,Nm \\
$
Now substitute the initial and final energies in equation (1).
$
W = {U_f} - {U_i} \\
\Rightarrow 25\,Nm - 6.5\,Nm \\
\Rightarrow 18.5\,Nm \\
$
Therefore, the work required to stretch it further by another $5\,cm$ is $18.5\,Nm$.
So, the answer is option C.
Note: Here, while substituting for the value of displacement in the final potential energy remember to substitute the value $0.1\,m$. The spring was already stretched by $0.05\,m$ and we need to find the work done when it is further stretched by $0.05\,m$.So the final displacement will be $0.05\,m + 0.05\,m = 0.1\,m$
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore,
$W = {U_f} - {U_i}$
${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Where ${x_i}$ is the initial displacement.
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Where ${x_f}$ is the final displacement.
Complete step by step solution:
Work done in stretching a spring is stored as the elastic potential energy given by the equation,
$U = \dfrac{1}{2}k{x^2}$
Where $k$ is the spring constant and $x$ is the displacement.
This potential energy can be said as the energy due to the deformation of the spring
Given,
Initial displacement,
$
{x_i} = 5\,cm \\
\Rightarrow 5 \times {10^{ - 2}}\,m \\
\Rightarrow 0.05\,m \\
$
Final displacement,
$
\Rightarrow {x_f} = 0.05\, + 0.05 \\
\Rightarrow 0.1\,m \\
$
Value of spring constant, $k = 5 \times {10^3}\,N{m^{ - 1}}$
The change in potential energy of an object between two positions is equal to the work done in moving the object from first position to next. So, in order to calculate the work done to move spring from one position to another, it is enough to find the difference in potential energy between two positions. This work depends upon the spring constant and the distance stretched.
Therefore, the work required to stretch it further by another $5\,cm$ is the change in initial potential energy and final potential energy.
$W = {U_f} - {U_i}$ ………… (1)
Where ${U_i}$ is the initial energy given as,
${U_i} = \dfrac{1}{2}kx_i^2$
Substituting the given values, we get
$
{U_i} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.05} \right)^2} = 6.25\,Nm \\
$
${U_f}$ is the final energy given as,
${U_f} = \dfrac{1}{2}kx_f^2$
Substituting the given values, we get
$
{U_f} = \dfrac{1}{2} \times 5 \times {10^3} \times {\left( {0.1} \right)^2} = 25\,Nm \\
$
Now substitute the initial and final energies in equation (1).
$
W = {U_f} - {U_i} \\
\Rightarrow 25\,Nm - 6.5\,Nm \\
\Rightarrow 18.5\,Nm \\
$
Therefore, the work required to stretch it further by another $5\,cm$ is $18.5\,Nm$.
So, the answer is option C.
Note: Here, while substituting for the value of displacement in the final potential energy remember to substitute the value $0.1\,m$. The spring was already stretched by $0.05\,m$ and we need to find the work done when it is further stretched by $0.05\,m$.So the final displacement will be $0.05\,m + 0.05\,m = 0.1\,m$
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

