
A spring having a spring constant K is loaded with a mass m. The spring is cut into two equal parts and one of these is loaded again with the same mass. The new spring constant is
A. \[\dfrac{k}{2}\]
B. k
C. 2k
D. \[{k^2}\]
Answer
137.4k+ views
Hint: Spring constant of a spring is inversely proportional to the length of the spring and will be the same for both halves of the spring.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Formula used:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
Here k is the spring constant.
Complete step by step solution:
A spring of constant k is loaded with mass, we have to find the spring constant when the spring is cut into two equal halves and one of them is loaded with the same mass again.
As spring constant of a spring is inversely proportional to the length of the spring.
Let the length of the spring be l then, the relation between constant k and length l can be mathematically expressed as:
\[k \propto \dfrac{1}{{Length\,of\,spring(l)}}\]
When the spring is cut into two equal halves then the length of each halves will be \[\dfrac{l}{2}\] and let the spring constant of one half be k’.
From the proportionality relation when length becomes half spring constant will be doubled i.e. k’ = 2k.
Therefore, option C is the correct option.
Note: Spring constant for both halves will be equal i.e. 2k and it does not depend on the mass of the object suspended to the spring. It can be mathematically proved by equation\[F = - kx = - m{\omega ^2}x\], as on substituting \[{\omega ^2} = \dfrac{k}{m}\]in \[k = m{\omega ^2}\]mass m of object will be canceled out.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2025 Question Paper PDFs with Solutions Free Download

Difference Between Density and Volume: JEE Main 2024

Difference Between Series and Parallel Circuits: JEE Main 2024

Difference Between Analog and Digital: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
