
A sound wave of frequency 245 Hz travels with the speed of $300\dfrac{m}{s}$ along the positive x-axis. Each point of the wave moves to and fro through a total distance of 6 cm. What will be the mathematical expression of this travelling wave?
A. $Y = 0.03\sin \left[5.1x - \left(0.2 \times {10^3}t\right)\right]$
B. $Y = 0.06\sin \left[5.1x - \left(1.5 \times {10^3}t\right)\right]$
C. $Y = 0.06\sin \left[0.8x - \left(0.5 \times {10^3}t\right)\right]$
D. $Y = 0.03\sin \left[5.1x - \left(1.5 \times {10^3}t\right)\right]$
Answer
219.6k+ views
Hint: It is crucial to understand the meanings of travelling waves before moving on to the issue. A disturbance in a medium can be characterised as a wave if it propagates while transferring energy and momentum with no net motion of the medium. A travelling wave is one whose positions of maximum and minimum amplitude move through the medium.
Complete answer:
General expression for wave travelling along positive x axis is of the form
$Y = A\sin (kx - \omega t)$
Given that,
$f = 245Hz$
$v = 300\dfrac{m}{s}$
Here we have $A = \dfrac{6}{2} = 3cm$
$\omega = 2\pi f$
$ \Rightarrow \omega = 2\pi \times 245 = 1.54 \times {10^3}\dfrac{{rad}}{{\sec }}$
$k = \dfrac{\omega }{v} = \dfrac{{1.54 \times {{10}^3}}}{{300}}$
$k = 5.1{m^{ - 1}}$
So mathematical expression of travelling wave will be given by
$Y = 0.03\sin \left[5.1x - \left(1.5 \times {10^3}t\right)\right]$
Therefore, the correct answer is option (D).
Additional information:
1. The medium must, nevertheless, possess elastic characteristics.
2. The maximum distance of the disturbance from the wave's midpoint to the top of the crest or the bottom of the trough is known as the amplitude.
3. A wavelength is the maximum separation between two adjacent troughs.
4. The time now truly refers to the duration of one vibration.
5. The number of vibrations a wave makes in one second is its frequency.
6. Both frequency and duration exhibit an inverse relationship. The connection is shown below,
$T = \dfrac{1}{f}$
The speed of a wave is given by,
$v = \lambda f$
Where $\lambda$ is the wavelength.
Note: Students might mistake in the question to write amplitude 6 cm but it’s not correct. Half of the amplitude complete length is provided to us. Always keep that in mind. A crucial second-order linear partial differential equation for the description of waves is the wave equation
Complete answer:
General expression for wave travelling along positive x axis is of the form
$Y = A\sin (kx - \omega t)$
Given that,
$f = 245Hz$
$v = 300\dfrac{m}{s}$
Here we have $A = \dfrac{6}{2} = 3cm$
$\omega = 2\pi f$
$ \Rightarrow \omega = 2\pi \times 245 = 1.54 \times {10^3}\dfrac{{rad}}{{\sec }}$
$k = \dfrac{\omega }{v} = \dfrac{{1.54 \times {{10}^3}}}{{300}}$
$k = 5.1{m^{ - 1}}$
So mathematical expression of travelling wave will be given by
$Y = 0.03\sin \left[5.1x - \left(1.5 \times {10^3}t\right)\right]$
Therefore, the correct answer is option (D).
Additional information:
1. The medium must, nevertheless, possess elastic characteristics.
2. The maximum distance of the disturbance from the wave's midpoint to the top of the crest or the bottom of the trough is known as the amplitude.
3. A wavelength is the maximum separation between two adjacent troughs.
4. The time now truly refers to the duration of one vibration.
5. The number of vibrations a wave makes in one second is its frequency.
6. Both frequency and duration exhibit an inverse relationship. The connection is shown below,
$T = \dfrac{1}{f}$
The speed of a wave is given by,
$v = \lambda f$
Where $\lambda$ is the wavelength.
Note: Students might mistake in the question to write amplitude 6 cm but it’s not correct. Half of the amplitude complete length is provided to us. Always keep that in mind. A crucial second-order linear partial differential equation for the description of waves is the wave equation
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction Explained: Definition, Examples & Science for Students

Analytical Method of Vector Addition Explained Simply

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

