
A solid rectangular door of uniform thickness is 2 m wide and has a mass of 60 kg. it is hinged about a vertical axis along one of its longer edges. Assume the thickness of the door is small. If the moment of inertia about its hinges of the door is 10n kg , find n.
Answer
176.1k+ views
Hint: We will calculate the moment of inertia of the given solid rectangular door of mass M about the centre of mass of door using the formula and then we will use the parallel axis theorem to calculate the moment of inertia about the hinges of the door by using the formula: where I is the total moment of inertia and Icm is the moment of inertia about the centre of mass and d is the distance between the vertical axis and the centre of mass. After that, we will compare the given value to the obtained value to find the value of n.
Complete step by step solution:
We are given that a solid rectangular door is of uniform thickness.
Its width is given as 2 m.
The mass of the door is also provided which is 60 kg.
The distance between the centre of mass and the vertical axis of the door will be 1 m as we know that the width of the door is 2 m and hence the distance will be halved.
Now, the moment of inertia about the centre of the mass of the rectangular door will be given as:
We have M = 60 kg and b = 2 m. on putting these values in the above equation, we get
We have calculated the value of Icm and now we will calculate the value of the moment of inertia about the hinges of the door.
We have , on putting values in this equation, we get
Therefore, the moment of inertia about the hinges of the door I = 80 kg .
Comparing it with the given value of moment of inertia which is 10n kg , we get n = 8.
Note: You may get confused while reading the given problem because both the moment of inertia is given i.e., the moment of inertia about the centre of mass and the moment of inertia about the vertical axis at a certain distance from the centre of mass of the body.
Complete step by step solution:
We are given that a solid rectangular door is of uniform thickness.
Its width is given as 2 m.
The mass of the door is also provided which is 60 kg.
The distance between the centre of mass and the vertical axis of the door will be 1 m as we know that the width of the door is 2 m and hence the distance will be halved.
Now, the moment of inertia about the centre of the mass of the rectangular door will be given as:
We have M = 60 kg and b = 2 m. on putting these values in the above equation, we get
We have calculated the value of Icm and now we will calculate the value of the moment of inertia about the hinges of the door.
We have
Therefore, the moment of inertia about the hinges of the door I = 80 kg
Comparing it with the given value of moment of inertia which is 10n kg
Note: You may get confused while reading the given problem because both the moment of inertia is given i.e., the moment of inertia about the centre of mass and the moment of inertia about the vertical axis at a certain distance from the centre of mass of the body.
Recently Updated Pages
JEE Main Physics Mock Test 2025

JEE Main Maths Mock Test 2025: FREE Online Mock Test Series

JEE Main Chemistry Mock Test 2025

JEE Main Hydrocarbons Mock Test 2025-26: Free Practice Online

JEE Main 2025-26 Mock Test: Organic Compounds Containing Nitrogen

JEE Main 2025-26 Mock Test: Organic Compounds Containing Halogens

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
